首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mae1 gene of the yeast Schizosaccharomyces pombe was identified on the basis of its ability to complement a mutant defective in the transport of malic acid. Analysis of the DNA sequence revealed an open reading frame of 1314 base pairs, encoding a polypeptide of 438 amino acids with a predicted molecular weight of 49 kDa. A hydropathy profile of the predicted amino acid sequence revealed a protein with ten membrane-spanning or associated domains and hydrophilic N- and C- termini. The predicted secondary structure of the protein is similar to models proposed for other integral mambrane proteins from both prokaryotes and eukaryotes. The S. pombe mae1 gene encodes a single mRNA of 1·5 kb. The mae1 gene is expressed constitutively and is not subject to catabolite repression as was previously reported for the malate permease systems of Candida utilis and Hansenula anomala. The mae1 gene was mapped 2842 bp 5′ to the MFm1 gene on chromosome I. Transport assays revealed that the mae1 gene encodes a permease involved in the uptake of L-malate, succinate and malonic acid. The sequence of the S. pombe mae1 gene is available in GenBank under Accession Number U21002.  相似文献   

2.
A 3·6 kb DNA fragment from Saccharomyces douglasii, containing the ARG4 gene, has been cloned, sequenced and compared to the corresponding region from Saccharomyces cerevisiae. The organization of this region is identical in both yeasts. It contains besides the ARG4 gene, another complete open reading frame (ORF) (YSD83) and a third incomplete one (DED81). The ARG4 and the YSD83 coding regions differ from their S. cerevisiae homologs by 8.1% and 12·5%, respectively, of base substitutions. The encoded proteins have evolved differently: amino acid replacements are significantly less frequent in Arg4 (2·8%) than in Ysc83 (12·4%) and most of the changes in Arg4 are conservative, which is not the case for Ysc83. The non-coding regions are less conserved, with small AT-rich insertions/deletions and 20% base substitutions. However, the level of divergence is smaller in the aligned sequences of these regions than in silent sites of the ORFs, probably revealing a higher degree of constraints. The Gcn4 binding site and the region where meiotic double-strand breaks occur, are fully conserved. The data confirm that these two yeasts are evolutionarily closely related and that comparisons of their sequences might reveal conserved protein and DNA domains not expected to be found in sequence comparisons between more diverged organisms.  相似文献   

3.
The URA3 gene, coding for orotidine-5′-phosphate decarboxylase, from Kluyveromyces marxianus CBS 6556, was isolated from a genomic DNA library. The K. marxianus URA3 gene encodes a protein of 267 amino acids with a calculated molecular weight of 29·3 kDa. Comparison of the K. marxianus protein with the corresponding enzymes of Saccharomyces cerevisiae and Kluyveromyces lactis showed amino acid sequence identifies of 81% and 88%, respectively. Using contour-clamped homogeneous electric field gel electrophoresis, the genomic copy was found to be located on chromosome VI. We have used the cloned gene for the construction of a K. marxianus leu2 mutant. This mutant contains no heterologous sequences, which is essential to make it acceptable for application in the food industry.  相似文献   

4.
粟酒裂殖酵母降苹果酸基因克隆及其序列分析   总被引:1,自引:0,他引:1  
粟酒裂殖酵母(Schizosaccharomyces pombe)由于可降解苹果酸(malo-ethanolic fermentation)而被广泛应用于葡萄酒等果酒的酿造。其生理活性依靠的是苹果酸通透酶(MAEI)和苹果酸酶(MAE2)2个关键酶的作用。以粟酒裂殖酵母基因组DNA为模板,采用聚合酶链式反应(PCR)技术,扩增得到苹果酸通透酶基因(mae1)和苹果酸酶基因(mae2),并插入到pMD—T载体中,转化大肠杆菌得到相应的转化子。测序后分析表明,扩增的mae1基因与mae2基因序列与已报道的序列同源性均为99%,mae1基因编码的氨基酸序列中有2个与报道不同;mae2基因编码的氨基酸中有3个与报道不同。  相似文献   

5.
The nucleotide sequence of 23·6 kb of the right arm of chromosome XIV is described, starting from the centromeric region. Both strands were sequenced with an average redundancy of 4·87 per base pair. The overall G+C content is 38·8% (42·5% for putative coding regions versus 29·4% for non-coding regions). Twelve open reading frames (ORFs) greater than 100 amino acids were detected. Codon frequencies of the twelve ORFs agree with codon usage in Saccharomyces cerevisiae and all show the characteristics of low level expressed genes. Five ORFs (N2019, N2029, N2031, N2048 and N2050) are encoded by previously sequenced genes (the mitochondrial citrate synthase gene, FUN34, RPC34, PRP2 and URK1, respectively). ORF N2052 shows the characteristics of a transmembrane protein. Other elements in this region are a tRNAPro gene, a tRNAAsn gene, a τ34 and a truncated δ34 element. Nucleotide sequence comparison results in relocation of the SIS1 gene to the left arm of the chromosome as confirmed by colinearity analysis. The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number X77395.  相似文献   

6.
Recombinant strains of Saccharomyces cerevisiae with the ability to reduce wine acidity could have a significant influence on the future production of quality wines, especially in cool climate regions. L-Malic acid and L-tartaric acid contribute largely to the acid content of grapes and wine. The wine yeast S. cerevisiae is unable to effectively degrade L-malic acid, whereas the fission yeast Schizosaccharomyces pombe efficiently degrades high concentrations of L-malic acid by means of a malo-ethanolic fermentation. However, strains of Sz. pombe are not suitable for vinification due to the production of undesirable off-flavours. Heterologous expression of the Sz. pombe malate permease (mae1) and malic enzyme (mae2) genes on plasmids in S. cerevisiae resulted in a recombinant strain of S. cerevisiae that efficiently degraded up to 8 g/l L-malic acid in synthetic grape must and 6.75 g/l L-malic acid in Chardonnay grape must. Furthermore, a strain of S. cerevisiae containing the mae1 and mae2 genes integrated in the genome efficiently degraded 5 g/l of L-malic acid in synthetic and Chenin Blanc grape musts. Furthermore, the malo-alcoholic strains produced higher levels of ethanol during fermentation, which is important for the production of distilled beverages.  相似文献   

7.
Using chromosomal DNA from Kluyveromyces lactis as template and oligodeoxynucleotides designed from conserved regions of various G protein alpha subunits we were able to amplify by the polymerase chain reaction two products of approximately 0·5 kb (P-1) and 0·8 kb (P-2). Sequencing showed that these two fragments share high homology with genes coding for the Gα subunits from different sources. Using the P-1 fragment as a probe we screened a genomic library from K. lactis and we cloned a gene (KlGPA2) whose deduced amino acid sequence showed, depending on the exact alignment, 62% similarity and 38% identity with Gpa1p and 76% similarity and 63% identity with Gpa2p, the G protein α subunits from Saccharomyces cerevisiae. KlGPA2 is a single-copy gene and its disruption rendered viable cells with significantly reduced cAMP level, indicating that this Gα subunit may be involved in regulating the adenylyl cyclase activity, rather than participating in the mating pheromone response pathway. KlGpa2p shares some structural similarities with members of the mammalian Gαs family (stimulatory of adenylyl cyclase) including the absence in its N-terminus of a myristoyl-modification sequence. The sequence reported in this paper has been deposited in the GenBank data base (Accession No. L45105).  相似文献   

8.
We isolated a mutant defective in C-terminal farnesyl cysteine:carboxyl methyltransferase activity from a screen for mutations causing a -specific sterility. A genomic fragment was cloned from a yeast multi-copy library that restored mating. Both the cloned gene and the sterile mutation were allelic to the STE14 gene. A ste14-complementing 2·17 kb BamHI fragment subclone was sequenced and found to encode a 239 amino acid protein with a molecular weight of 27,887 Daltons. The hydrophobicity profile of the methyltransferase reveals the presence of at least five potential transmembrane domains. In comparisons of the C-terminal methyltransferase amino acid sequence with those in the PIR and Swiss protein databases, no significantly similar sequences were found nor were conserved regions from other methyltransferases present.  相似文献   

9.
The 4·2 kbp lys1+ gene of Schizosaccharomyces pombe encoding the large subunit of α-aminoadipate reductase (EC1.2.1.31), an enzyme specific to lysine synthesis in higher fungi, was completely sequenced at the nucleotide level from pLYS1H. The S. pombe lys1+ gene product consists of 1415 amino acid residues and has a putative molecular weight of 155·8 kDa. The encoded protein converts α-aminoadipic acid to α-aminoadipate-δ-semialdehyde by an ATP-mediated adenylation. Analysis of the sequence showed that the putative protein encoded by lys1+ shares strong homology with the peptide antibiotic synthetases which also use an adenylation step. The sequence data reported in this paper have been submitted to GenBank database (Washington DC, USA) under the Accession Number U15923. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Actin molecules are major cytoskeleton components of all eukaryotic cells. All conventional actins that have been identified so far are 374–376 amino acids in size and exhibit at least 70% amino acid sequence identity when compared with one another. In the yeast Saccharomyces cerevisiae, one conventional actin gene ACT1 and three so-called actin-related genes, ACT2, ACT3 and ACT5, have been identified. We report here the discovery of a new actin-related gene in this organism, which we have named ACT4. The deduced protein, Act4, of 449 amino acids, exhibits only 33·4%, 26·7%, 23·4% and 29·2% identity to Act1, Act2, Act3 and Act5, respectively. In contrast, it is 68·4% identical to the product of the Schizosaccharomyces pombe Act2 gene and has a similar level of identity to other Sch. pombe Act2 homologues. This places Act4 in the Arp3 family of actin-related proteins. ACT4 gene disruption and tetrad analysis demonstrate that this gene is essential for the vegetative growth of yeast cells. The act4 mutants exhibit heterogenous morphological phenotypes. We hypothesize that Act4 may have multiple roles in the cell cycle. The sequence has been deposited in the Genome Sequence Data Base under Accession Number L37111.  相似文献   

11.
12.
A 6·8 kbp DNA fragment localized to the left arm of chromosome XI from Saccharomyces cerevisiae was sequenced and analysed (EMBL accession no. X69765). Two genes involved in protein phosphatase activity were identified: YCN2 and an open reading frame encoding a protein that shares 46% amino acid identity with the sds22+ protein from Schizosaccharomyces pombe. A comparison of the genomic YCN2 sequence with the published cDNA sequence suggests the presence of an intron near the 5′ end of the gene. Further sequence analysis suggests the presence of three additional genes near YCN2: a mitochondrial acyl-carrier protein, a gene encoding a putative hydrophobic protein, and a new gene coding for a tRNALeu (UAA) isoacceptor located near a delta sequence.  相似文献   

13.
MAK16 is an essential gene on chromosome I defined by the thermosensitive lethal mak161 mutation. MAK16 is also necessary for M double-stranded RNA replication at the permissive temperature for cell growth. As part of an effort to clone all the DNA from chromosome I, plasmids that complemented both the temperature-sensitive growth defect, and the M1 replication defects of mak161 strains were isolated from a plasmid YCp50: Saccharomyces cerevisiae recombinant DNA library. The two plasmids analysed contained overlapping inserts that hybridized proportionally to strains carrying different dosages of chromosome I. Furthermore, integration of a fragment of one of these clones occurred at a site linked to ade1, confirming that this clone was derived from the appropriate region of chromosome I. An open reading frame adjacent to MAK16 potentially coding for a 468 amino acid protein was defined by sequence analysis. 185 amino acids of this open reading frame were replaced with a 1·2 kb fragment carrying the S. cerevisiae URA3 gene by a one-step gene disruption. The resulting strains grew at a rate indistinguishable from the wild type at 20°C, 30°C, or 37°C, but could not grow at 8°C. The deleted region is thus essential only at 8°C, and we name this gene LTE1 (low temperature essential).  相似文献   

14.
Cells of the yeast Candida utilis grown in medium with short-chain mono-, di- or tricarboxylic acids transported L(-)malic acid by two transport systems at pH 3·0. Results indicate that probably a proton symport for the ionized form of the acid and a facilitated diffusion for the undissociated form were present. Dicarboxylic acids such as succinic, fumaric, oxaloacetic and α-ketoglutaric acids were competitive inhibitors of the malic acid for the high-affinity system, suggesting that these acids used the same transport system. In turn, competitive inhibition uptake studies of labelled carboxylic acid in the low-affinity range indicated that this system was non-specific and able to accept not only carboxylic (mono-, di- or tri-) acids but also some amino acids. Additionally, under the same growth conditions, C. utilis produced two mediated transport systems for lactic acid: a proton symport for the anionic form which appeared to be a common monocarboxylate carrier and a facilitated diffusion system for the undissociated acid displaying a substrate specificity similar to that observed for the low-affinity dicarboxylic acid transport. The mediated carboxylic acid transport systems were inducible and subjected to repression by glucose. In glucose-grown cells the undissociated dicarboxylic acids entered the cells slowly by simple diffusion. Repressed glucose-grown cells were only able to produce both transport systems if an inducer, at low concentration (0·5%, w/v), was present during starvation in buffer. This process was inhibited by the presence of cycloheximide indicating that induction requires de novo protein synthesis. If a higher acid concentration was used, only the low-affinity transport system was detectable, showing that the high-affinity system was also repressed by high concentrations of the inducer.  相似文献   

15.
16.
A gene homologous to Saccharomyces cerevisiae PMR1 has been cloned in the methylotrophic yeast Hansenula polymorpha. The partial DNA fragment of the H. polymorpha homologue was initially obtained by a polymerase chain reaction and used to isolate the entire gene which encodes a protein of 918 amino acids. The putative gene product contains all ten of the conserved regions observed in P-type ATPases. The cloned gene product exhibits 60·3% amino acid identity to the S. cerevisiae PMR1 gene product and complemented the growth defect of a S. cerevisiae pmr1 null mutant in the EGTA-containing medium. The results demonstrate that the H. polymorpha gene encodes the functional homologue of the S. cerevisiae PMR1 gene product, a P-type Ca2+-ATPase. The DNA sequence of the H. polymorpha homologue has been submitted to GenBank with the Accession Number U92083. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
A 9·9 kb DNA fragment from the right arm of chromosome VII of Saccharomyces cerevisiae has been sequenced and analysed. The sequence contains four open reading frames (ORFs) longer than 100 amino acids. One gene, PFK1, has already been cloned and sequenced and the other one is the probable yeast gene coding for the β-subunit of the succinyl-CoA synthetase. The two remaining ORFs share homology with the deduced amino acid sequence (and their physical arrangement is similar to that) of the YHR161c and YHR162w ORFs from chromosome VIII. The sequence is in the EMBL data library under Accession Numbers Z73024, Z73025, Z73026, Z73028 and Z73029.©1997 John Wiley & Sons, Ltd.  相似文献   

18.
SUP2(SUP35) is an omnipotent suppressor gene, coding for an EF-1α-like protein factor, intimately involved in the control of translational accuracy in yeast Saccharomyces cerevisiae. In the present study a SUP2 gene analogue from yeast Pichia pinus was isolated by complementation of the temperature-sensitive sup2 mutation of S. cerevisiae. The nucleotide sequence of the SUP2 gene of P. pinus codes for a protein of 82·4 kDa, exceeding the Sup2 protein of S. cerevisiae by 6 kDa. Like the SUP2 gene product of S. cerevisiae, the Sup2 protein of P. pinus represents a fusion of a unique N-terminal part of a region homologous to EF-1α. The comparison of amino acid sequences of the Sup2 proteins reveals high conservations (76%) of the C-terminal region and low conservation (36%) of the N-terminal part where, in addition, the homologous correspondence is ambiguous. Proteins related to the Sup2 of S. cerevisiae where found in P. pinus and some other yeast species by the immunoblotting technique. The relation between the evolutionary conservation of different regions of the Sup2 protein and their functional significance is discussed.  相似文献   

19.
We have cloned and sequenced the hcs gene, which is thought to encode a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase consisting of 447 amino acids, from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequence of the hcs product of S. pombe has homology with the HMG-CoA synthase of rat (47·8%), chicken (49·2%), hamster (47·1%) and human cells (46·9%). One of the hcs genes was replaced with a marker gene in the diploid cell. No viable hcs-disrupted haploid was isolated after tetrad dissection, suggesting that the hcs gene is essential for growth. However the hcs-defective mutant could be grown on a medium containing 5 mg/ml mevalonate. These results strongly support that the hcs gene encodes HMG-CoA synthase and S. pombe contains a single copy of the hcs gene. The sequence of the hcs gene has been entered into the public data libraries under Accession Number U32187.  相似文献   

20.
An extracellular esterase was isolated from the brewer's yeast, Saccharomyces carlsbergensis. Inhibition by diisopropyl fluorophosphate shows that the enzyme has a serine active site. By mass spectrometry, the molecular weight of the enzyme was 16·9 kDa. The optimal pH for activity was in the range of four to five. Esterase activity was found in beer before pasteurization, and a low level of activity was still present after pasteurization. Caprylic acid, which is present in beer, competitively inhibited the esterase. The substrate preference towards esters of p-nitrophenol indicated that the enzyme prefers esters of fatty acids from four to 16 carbon atoms. The esterase has lipolytical activity; olive oil (C-18:1), which is a classical substrate for lipase, was hydrolysed. N-terminal sequence analysis of the esterase yielded a sequence which was identical to the deduced amino acid sequence of the S. cerevisiae TIP1 gene. The esterase preparation did not appear to contain significant amounts of other proteins than Tip1p, indicating that the TIP1 gene is the structural gene for the esterase. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号