首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The extrusion blow moulding process is becoming increasingly important in the polymer industry. Parison programming is a crucial component of the extrusion blow moulding process, since it allows for the optimization of resin usage in a given part. However, the inflation of programmed (variable thickness) parisons is very complex and is not a well understood phenomenon. The goal of this work is to present some experimental results demonstrating the effects of melt temperature on the inflation of programmed parisons. The inflation of parisons into a non-axisymmetric motor oil bottle is considered. Four parison thickness profiles are studied. These are (i) low magnitude constant thickness, (ii) high magnitude constant thickness, (iii) one step high to low magnitude thickness and (iv) two step low to high to low magnitude thickness. Three melt temperatures were used; 180, 200 and 220°C.  相似文献   

2.
The numerical modeling of the extrusion blow molding of a fuel tank is considered in this work. The integrated process phases are consecutively simulated, namely, parison formation, clamping, and inflation, as well as part solidification, part deformation (warpage), and the buildup of residual stresses. The parison formation is modeled with an integral type viscoelastic constitutive equation for the sag behavior and a semi-empirical equation for the swell behavior. A nonisothermal viscoelastic formulation is employed for the clamping and inflation simulation, since parison cooling during extrusion strongly affects the inflation behavior. Once the parison is inflated, it solidifies while in the mold and after part ejection. Warpage and residual stress development of the part are modeled with a linear viscoelastic solid model. Numerical predictions are compared with experimental results obtained on an industrial scale blow molding machine. Good agreement is observed. A process optimization based on a desired objective function, such as uniform part thickness distribution and/or minimal part weight, is performed. The integrated clamping, inflation, and cooling stages of the process are considered. The optimization is done by the systematic manipulation of the parison thickness distribution. Iterations are performed employing a gradient based updating scheme for the parison thickness programming, until the desired objective of uniform part thickness is obtained.  相似文献   

3.
Experimental data are reported regarding the dynamics of the blow molding process, including parison formation, growth, and inflation. These data have been obtained with the aid of high speed cinematography and pinch mold experiments, in conjunction with two commercial blow molding polyethylene resins. It is shown that pinch mold experiments alone do not yield accurate data regarding thickness and diameter swell. Furthermore, the inflation process involves decreasing rates of inflation with time, as a result of the rise in viscosity due to the cooling of the parison during inflation. Mathematical procedures are proposed for a first-order estimation of parison length and swell as a function of time and the inflation behavior after clamping. In the absence of more dependable basic procedures, the proposed treatment is employed to estimate the effective transient swell functions for the parison using experimental data obtained under the specified conditions. The mathematical treatment is extended to determine the thickness distribution of the bottle. Good agreement is obtained between experimental and calculated results.  相似文献   

4.
In this work, two new strategies were proposed for predicting the parison thickness and diameter distributions in extrusion blow molding. The first one was a finite-element-based numerical simulation for the parison extruded from a varying die gap. The comparison of simulated and experimental parison thickness distributions indicates that the new method has certain accuracy in predicting the parison thickness from a varying die gap. The second one was an artificial neural network (ANN) approach, the characteristics of which are in sufficient patterns that can be obtained without doing too many experiments. The diameter and thickness swells of the parisons extruded under different flow rates were obtained by a well-designed experiment. The obtained data were then used to train and test the ANN model. The dimension of one location on the parison can provide one pattern to train the ANN model. Trained and tested ANN model can be used to predict the dimensions at any location on the parison within a given range. The proposed two strategies can help search the processing conditions to obtain optimal parison thickness distributions.  相似文献   

5.
An experimental study of the kinematics of inflation of poly(ethylene terephthalate) (PET) parisons in a Corpoplast stretch blow molding process is reported. LVDT displacement transducers have been placed at various positions along the length and at the top of a specially designed and built mold. A six-channel LVDT demodular circuit was built and attached to a minicomputer. Studies were conducted at 90 and 100°C at various pressures. Kinematic models were developed for the parison inflation, and stress fields along the deforming surface of the parison were computed using membrane theory.  相似文献   

6.
This paper focuses on the overall numerical simulation of the parison formation and inflation process of extrusion blow molding. The competing effects due to swell and drawdown in the parison formation process were analyzed by a Lagrangian Eulerian (LE) finite element method (FEM) using an automatic remeshing technique. The parison extruded through an annular die was modeled as an axisymmetric unsteady nonisothermal flow with free surfaces and its viscoelastic properties were described by a K‐BKZ integral constitutive equation. An unsteady die‐swell simulation was performed to predict the time course of the extrudate parison shape under the influence of gravity and the parison controller. In addition, an unsteady large deformation analysis of the parison inflation process was also carried out using a three‐dimensional membrane FEM for viscoelastic material. The inflation sequence for the parison molded into a complex‐shaped mold cavity was analyzed. The numerical results were verified using experimental data from each of the sub‐processes. The greatest advantage of the overall simulation is that the variation in the parison dimension caused by the swell and drawdown effect can be incorporated into the inflation analysis, and consequently, the accuracy of the numerical prediction can be enhanced. The overall simulation technique provides a rational means to assist the mold design and the determination of the optimal process conditions.  相似文献   

7.
3D挤出吹塑型坯吹胀的数值模拟   总被引:1,自引:0,他引:1  
采用超弹本构模型对挤出吹塑型坯吹胀进行了3D数值模拟,得到了型坯在吹胀过程中的型坯轮廓曲线分布以及吹胀完毕时的型坯壁厚分布,模拟的结果与文献的实验结果相吻合;探讨了材料的性能、初始条件和吹胀压力等工艺条件对吹胀完毕后的壁厚分布影响,这为在实际生产获得最佳的加工工艺参数提供了依据。  相似文献   

8.
A finite element numerical analysis of preform inflation associated with the injection blow molding process has been developed using a neo-Hookean constitutive model. The analysis is capable of predicting final wall thickness distributions for axisymmetric mold geometries. Experimental studies were conducted on a Uniloy injection blow molding machine (Model 189-3 and Model 122). A twelve ounce (355 mL) cylindrical bottle mold was instrumented with contact sensors, thermocouples, and pressure transducers. Visualization studies of the inflation process were performed using specialized tooling and high-speed video cameras. The experimental studies provide justification for analyzing the deformation by means of a static elastic approach. The predicted wall thickness distribution is in reasonable agreement with the experimental data. Nonuniformities in the temperature distribution in the preform were found to have the most significant impact on the inflation behavior and the resulting wall thickness.  相似文献   

9.
Uni- and biaxial stretching of poly(ethylene terephthalate) (PET) specimens of appropriate geometry at temperatures near the glass-rubber transition may lead to non-uniform deformation unless the draw ratio exceeds a critical value, the natural draw ratio, characteristic of the onset of strain hardening due to stress-induced crystallization. Experimental results obtained in the present investigation show that natural draw ratios in uni- and biaxial stretching decrease with increasing resin molecular weight and with decreasing temperature. Undesirable uneven wall thickness distribution in biaxially stretched cylindrical parisons can only be prevented if draw ratios in both orthogonal principal stretching directions exceed the corresponding natural values. The minimum thickness reduction required for uniform biaxial stretching of a cylindrical parison at 95°C may vary between 12 and 5 depending on the resin's molecular weight or viscosity and this will affect the optimum design of parison geometry. The degree of unbalanced biaxial molecular orientation in the wall of cylindrical parisons stretched up to or beyond the natural draw ratios also depends on the resin molecular weight. Unbalanced biaxial orientation has been investigated by means of wide angle X-ray diffraction and birefringence measurements as well as its effect on various properties: rigidity, yield stress, creep compliance, and dimensional stability.  相似文献   

10.
An analysis of the confined parison inflation step associated with the extrusion blowmolding of a high-density polyethylene is presented. Based upon simple geometrical considerations and material conservation principles, relationships describing the wall thickness variation have been obtained for various mold configurations. The experimentally measured part thickness distribution is found to be in good qualitative agreement and reasonable quantitative correspondence with the theoretical predictions. Furthermore, the expressions for the thickness variation have been utilized in order to estimate the confined inflation time for the case of a power-law constitutive equation. In addition, a brief discussion of some practical mold design considerations is given based upon the theoretical analysis.  相似文献   

11.
We tried to predict the multilayer parison shape at pinch‐off stage in extrusion blow molding by nonisothermal and purely viscous non‐Newtonian flow simulation using the finite element method (FEM). We assumed the parison deformation as a flow problem. The Carreau model was used as the constitutive equation and FEM was used for calculation method. Multilayer parison used in this simulation was composed of high‐density polyethylene (HDPE) as inner and outer layers and low‐density polyethylene (LDPE) of which viscosity is five times lower than HDPE as a middle layer. We discussed multilayer parison shape in pinch‐off region. The results obtained are as follows; the parison shape of each layer was clearly visible in the pinch‐off during the mold closing. In addition, the distribution of parison thickness ratios for each layer was located for a large deformation near the pinch‐off region. The melt viscosity for each layer has an influence on the melt flow in the pinch‐off region. In a comparison with an experimental data of parison thickness ratios, the simulation results are larger than the experimental data. These simulation results obtained are in good agreement with the experimental data in consideration of the standard deviations. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

12.
挤出吹塑中型坯自由吹胀的动力学分析   总被引:2,自引:0,他引:2  
聚合物挤出吹疗程 型坯的自由吹胀受到多方面因素的影响。采用动力学方法对此进行了研究。模拟了史胀过程听型坯轮廓变化, 吹胀压力,材料模量,型坯初始壁厚对此过程的影响。  相似文献   

13.
Parison free inflation behavior, associated with the extrusion blow molding process, is considered both experimentally and theoretically. Experimental observations indicate1 that the parison assumes a rather complex shape under conditions of unrestricted inflation. In particular, the time-dependent shape is markedly ellipsoidal rather than cylindrical in nature. This nonuniform behavior, however, becomes more prominent in relation to the entire length as the parison-length-to-diameter ratio is decreased. Based on the experimental observations, a simplified analytical treatment of the free inflation of a viscoelastic parison is presented. The theoretical results illuminate the influence of material properties and process conditions on the inflation process. Expectedly, inflation is enhanced by an increase in the pressure driving force as well as by a decrease in viscosity. However, melt elasticity is also found to exert a significant influence on the inflation behavior. Moreover, the theoretical analysis suggests that the initial parison dimensions play a central role in controlling the inflation process.  相似文献   

14.
Optimization of final part thickness distributions is crucial in the extrusion blow molding process in order to minimize resin usage. Prediction of part thickness distributions from basic process and material parameters would be ideal. However, attempts to do so have been unsuccessful, largely because of the inability to predict parison thickness profiles. One must therefore resort to measurement of the parison thickness profile and estimation of the final part thickness distribution by computational methods. This paper describes a new technique for the noncontact estimation of parison thickness profiles in continuous extrusion blow molding. The method accounts for sag and requires no previous knowledge of rheological data. It can be employed on-line for the purposes of process monitoring and control. The approach is based on the measurement of the parison length evolution with time during extrusion, the parison diameter profile, the flow rate, and the melt temperature gradient along the length of the parison. These parameters are utilized in conjunction with a theoretical approach that describes the extrusion of a parison under the effects of swell, sag, and extrusion into ambient conditions. Results are presented for three resins of various molecular weight distributions. The degree of sag is minimal at the top and bottom of the parison, and reaches a maximum near the center of the parison. Results are also presented to demonstrate the versatility of the method under other process conditions, such as varying flow rate, die temperature, and die gap.  相似文献   

15.
Control over final part thickness distributions in extrusion blow molding would be very useful in resin optimization. An on-line measurement is essential for process monitoring and control of the part dimensions. Excessive resin usage results in material waste and increased cycle times because of increased cooling requirements. An inadequate thickness results in decreased mechanical strength, especially in regions along the part where large blow ratios or complex geometries exist. Neural networks are investigated as a method for the on-line prediction of the final part distribution from the parison dimensions. The purpose of this work is to demonstrate the feasibility, for preliminary use, of neural networks for this application. The network inputs include the initial parison thickness and tempera-ture profiles, the bottle mold geometry and a rheological parameter representative of the material. Varying blow-up ratios are obtained from the bottle mold geome-try. The network accesses data from a pool of eighty data sets for the training sequence. The data sets are broadly distributed with regard to the operating conditions, so as to give the network a wide range of applicability. The simulations are performed on data sets not present in the access pool used for training.  相似文献   

16.
In our previous study, we calculated the time course of parison length in the parison formation stage, but it could predict only the parison area swell. The next target in our study is to calculate the parison diameter and thickness swell. Annular extrudate swell simulation is necessary for the understanding of various kinds of swelling ratios in blow molding. We have examined three kinds of swells (outer diameter, thickness, and area swells) obtained from simulation results of annular extrudate swell, using the Giesekus model, and have developed a method of predicting parison outer diameter and thickness swell values. The predicted values of parison outer diameters are discussed in comparison with experimental data, and reasonable results are obtained by the proposed method. This prediction method could also be applied to the parison formation process using a parison controller. As a result, it is possible to predict approximately the whole process of parison formation by numerical simulation.  相似文献   

17.
挤出吹塑塑料油箱壁厚均匀性的研究与应用   总被引:2,自引:0,他引:2  
针对挤出吹塑高密度聚乙烯塑料油箱壁厚均匀性问题展开了研究,发现由于塑料油箱形状较复杂,均匀的型坯在吹塑过程中,各部位的变形不均匀,导致制件壁厚不均匀。根据制件各部位变形情况,设计异形型坯和口模,改善了挤出吹塑形状复杂的塑料油箱制件的壁厚均匀性。  相似文献   

18.
A 58% (by weight) long glass fiber reinforced (LGF)‐HDPE master batch was blended with a typical blow molding HDPE grade. HDPE composites having between 5% and 20% (by weight) long fiber content were extruded at different processing conditions (extrusion speed, die gap, hang time). The parison swell (diameter and thickness) decreased with increasing fiber content. Although the HDPE exhibited significant shear rate dependence, the LGF/HDPE composites were shear rate insensitive. Both the diameter and weight swell results also indicated very different sagging behavior. The LGF/HDPE parisons did sag as a solid‐body (equal speed at different axial locations) governed by the orientation caused by the flow in the die. Samples taken from blown bottles showed that fiber lengths decreased to 1‐3 mm, from the original 11 mm fiber length fed to the extruder. No significant difference in fiber length distribution was found when samples for different regions of the bottle were analyzed. SEM micrographs corroborate the absence of fiber segregation and clustering or the occurrence of fiber bundles (homogeneous spatial fiber distribution) as well as a preferential fiber orientation with the direction of flow. The blowing step did not change the orientation of the fibers. Five‐percent (5%) and 10% LGF/HDPE composites could be blown with very slight variations to the neat HDPE inflation conditions. However, 20% LGF/HDPE composites could not be consistently inflated. Problems related to blowouts and incomplete weldlines were the major source of problems.  相似文献   

19.
The simulation of the parison formation process in blow molding has been studied. The flow field was divided into two regions, namely, the extrudate swell region near the die lip and the parison formation region after the exit swell. In the swell region, we predicted the swelling ratio and residual stress distribution for high Weissenberg numbers for steady planar well using the 1-mode Giesekus model. In the parison formation region, the flow is assumed to be an unsteady unaxial elongational flow including drawdown and recoverable swell and is modeled using the 10-mode Giesekus model. We calculated the time course of parison length and thickness distribution, and compare the calculation results of parison length with experimental data. It was found that the predicted values agreed rather well with the experimental values. The calculation results could especially predict the shrink-back, which is the phenomenon where the parison length becomes shorter after the cessation of extrusion, and it was found tat this was caused by the recoverable swell of the parison, which depends on the tensile stress generation in the die. Various flow rates and die geometries were studied and confirmed the reliability and usefulness of the method.  相似文献   

20.
During suction blow molding process, the extruded parison undergoes twisting deformation within the mold cavity, as the air drawing flow around the deforming parison exerts non‐uniform shear stresses on its surface. Such twisting deformation can compromise the specific radial and circumferential variations in parison thickness that are intentionally generated during extrusion. This research is devoted in developing a fluid–structure interaction model for predicting parison deformation during suction blow molding process, with a specific emphasis on the suction stage. A fluid flow model, based on Hele‐Shaw approximations, is formulated to simulate the air drag force exerted on the parison surface. The rheology of the material of the parison is assumed to obey the viscoelastic K‐BKZ model. As the suction process also involves the sliding of the parison within the mold cavity, a modified Coulomb's law of dry friction is used to simulate the frictional contact between parison and mold. The numerical results of this study allowed identifying a clear correlation between the twisting deformation undergone by the parison during the suction stage, also observed experimentally and the design parameters, namely, the air drawing speed, the geometry of the duct mold cavity, and the parison/mold eccentricity. POLYM. ENG. SCI., 59:418–434, 2019. © 2018 Her Majesty the Queen in Right of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号