首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural polyphenols found in rosemary have not only potent antioxidant activities but also anticarcinogenic properties. We have studied some of the molecular mechanisms involved in their chemopreventive action using in vitro human liver and bronchial cell models. Rosemary extract, or its active components, carnosol or carnosic acid are potent inhibitors of DNA adduct formation induced by benzo(a)pyrene or aflatoxin B1. At least two mechanisms are involved in the anticarcinogenic action of rosemary extract: (i) inhibition of the metabolic activation of procarcinogens catalysed by the phase I cytochrome P450 enzymes; (ii) induction of the detoxification pathway catalysed by the phase II enzymes such as glutathione S-transferase.  相似文献   

2.
Rats treated with oxindole (10-100 mg/kg i.p.), a putative tryptophan metabolite, showed decreased spontaneous locomotor activity, loss of the righting reflex, hypotension, and reversible coma. Brain oxindole levels were 0.05 +/- 0.01 nmol/g in controls and increased to 8.1 +/- 1.7 or 103 +/- 15 nmol/g after its administration at doses of 10 or 100 mg/kg i.p., respectively. To study the role that oxindole plays in the neurological symptoms associated with acute liver failure, we measured the changes of its concentration in the brain after massive liver damage, and we investigated the possible metabolic pathways leading to its synthesis. Rats treated with either thioacetamide (0.2 and 0.4 g/kg i.p., twice) or galactosamine (1 and 2 g/kg i.p.) showed acute liver failure and a large increase in blood or brain oxindole concentrations (from 0.05 +/- 0.01 nmol/g in brains of controls to 1.8 +/- 0.3 nmol/g in brains of thioacetamide-treated animals). Administration of tryptophan (300-1,000 mg/kg p.o.) caused a twofold increase, whereas administration of indole (10-100 mg/kg p.o.) caused a 200-fold increase, of oxindole content in liver, blood, and brain, thus suggesting that indole formation from tryptophan is a limiting step in oxindole synthesis. Oral administration of neomycin, a broad-spectrum, locally acting antibiotic agent able to reduce intestinal flora, significantly decreased brain oxindole content. Taken together, our data show that oxindole is a neurodepressant tryptophan metabolite and suggest that it may play a significant role in the neurological symptoms associated with acute liver impairment.  相似文献   

3.
The preventive effect of Sho-saiko-to (Xiao-Chaihu-Tang) extract (TJ-9) on the progression of D-galactosamine (GaIN)-induced liver injury was examined in five week-old male Wistar rats with oral (p.o.) or intraperitoneal (i.p.) administration of the same dose of TJ-9. Rats treated once with GaIN (500 mg/kg body weight, i.p.) received TJ-9 at a dose of 1.0 g/kg body weight (p.o. or i.p.) 2 hours after GaIN treatment at which time an apparent liver injury occurred. Both p.o. and i.p. administration of TJ-9 showed similar significant prevention against the progression of liver injury 24 hours after GaIN injection. Although total protein and albumin concentrations in serum and protein concentration in the liver decreased with the progression of GaIN-induced liver injury, oral or i.p. administration of TJ-9 prevented these decreases in similar degree. However, decreases in serum and liver triglyceride concentration with the progression of liver injury were not attenuated after p.o. or i.p. administration of TJ-9. The activities of liver 5'-nucleotidase and glucose-6-phosphatase, marker enzymes of liver plasma and microsomal membranes, respectively, decreased during the progression of liver injury. A similar preventive effect on the decrease of both enzyme activities was found after p.o. or i.p. administration of TJ-9. These results indicate that the preventive effect on progression of GaIN-induced liver injury by oral or i.p. administration is approximately equal, and that the effect may be through improving the impaired liver protein synthesis and disrupted liver plasma and microsomal membranes in a similar degree.  相似文献   

4.
1. Thonningia sanguinea, a plant used prophylactically against bronchial asthma in Ghana was recently found to have antioxidative and hepatoprotective actions in our laboratory. 2. In this study, the effect of T. sanguinea extract on certain biochemical indices in serum and liver of Fischer 344 rats given a single intraperitoneal (i.p.) dose (1 mg/kg) of aflatoxin B1 (AFB1) was investigated. 3. Administration of AFB1 resulted in significant increases in serum alanine aminotransferase (ALT) and glutathione S-transferase (GST) levels and a significant decrease in aniline hydroxylase activity in liver microsomes. When T. sanguinea (5 ml/kg) was intraperitoneally administered to rats 12 h and 1 h before AFB1, liver injury was significantly reduced as seen in the decreased levels of serum ALT and serum GST. However, the decrease in aniline hydroxylase activity by AFB1 was not recovered but enhanced by T. sanguinea pre-treatment. 4. Kinetic analysis of cytochrome P450 activity of rat liver microsomes in vitro demonstrated that T. sanguinea inhibited aniline hydroxylase non-competitively suggesting depression of biotransformation of AFB1 to toxic metabolites. 5. The data indicate a hepatoprotective action of T. sanguinea against AFB1-induced liver injury.  相似文献   

5.
The objectives of the present work were to study the effects of certain peroxisome proliferators on xenobiotic-metabolizing enzyme activities in the testes of normal and hypothyroid rats, i.e. phenol sulfotransferases (pST), phenol UDP-glucuronosyl transferases (pUDPGT), glutathione transferases (GST), catalase, epoxide hydrolase (EH), glutathione peroxidase (GPX) and NAD(P)H quinone oxidoreductase (QR). Adult male rats (normal and hypothyroid) were treated for 10 days with clofibrate (0.5%), perfluorooctanoic acid (0.5%, PFOA), acetylsalisylic acid (1%, ASA) and di(2-ethylhexyl)phthalate (2%, DEHP) in their diet. The results show that treatment of normal rats with peroxisome proliferators dramatically affects the activities of xenobiotic-metabolizing enzymes (40-60% reduction). The highest effects are seen in catalase activity (50-60% with PFOA and ASA), pUDPGT (55% with PFOA), pST (55% with PFOA) and QR (50% with DEHP). These effects are not seen or are weaker after induction of hypothyroidism. Taken together, it is concluded that different classes of peroxisome proliferators have different effects on rat testicular xenobiotic-metabolizing enzymes.  相似文献   

6.
Metanil yellow, a non-permitted food colour, has been found in various foodstuffs. The induction potential of metanil yellow on hepatic microsomal cytochrome P-450 (P-450)-dependent monooxygenases and cytosolic detoxification enzymes, namely, glutathione S-transferase (GST) and quinone reductase (QR), was investigated. Oral administration of metanil yellow (430 mg/kg body weight) to four animals for seven days caused significant induction of hepatic P-450 (48%) and its dependent aryl hydrocarbon hydroxylase (100%) activity and cytosolic GST (136%) and QR (92%) activities. Parenteral administration of metanil yellow (80 mg/kg body weight) to another set of four animals for 3 days resulted in higher induction of ethoxyresorufin-O-deethylase (228%) as compared to other monooxygenases (64-92%), while GST and QR were also found to be induced (59-95%). Spectra of metanil yellow-induced microsomes showed an increase in P-450 with a shift of 2.2 nm in the soret region. The results suggest that metanil yellow acts as a bifunctional inducer of specific isozymes of P-450 and cytosolic enzymes and thus may involve the cytosolic aryl hydrocarbon (Ah) receptor for this type of induction.  相似文献   

7.
Groups of young male adult guinea pigs were fed a diet devoid in supplemental ascorbic acid (AA) or the same diet supplemented with 0.1 or 2.5% AA for four weeks. The animals were then euthanized and Phase I and Phase II drug metabolizing components in the liver were determined. Phase I components are those related to the metabolism of xenobiotics and include microsomal cytochrome P-450 and mixed function oxygenase activities. Phase II components are those related to conjugation and detoxification reactions of xenobiotics and their metabolites and include glutathione-S-transferases (GST), glutathione (GSH), UDP-glucuronyl transferase (UDP-GT) and DT-diaphorase (quinone reductase, QR). Tissue levels of AA increased progressively with increase in AA intake. The Phase I components increased in response to increased intake of AA from 0 to 0.1%, but were unaffected by further increase in AA intake to 2.5%. However, the Phase II components increased with increased intake of AA except for GST. In vitro metabolism of aflatoxin B1 (AFB1) using liver microsomes showed tendency towards increased production of aflatoxin M1 (AFM1) with increase in AA intake. The production of aflatoxin P1 (AFP1) was not affected by AA intake. AFB1-DNA production was increased when AA intake was increased to 0.1%. It was however lowered with further increase in AA intake to 2.5%.  相似文献   

8.
Embryonic bioactivation and formation of reactive oxygen species (ROS) are implicated in the mechanism of phenytoin teratogenicity. This in vivo study in pregnant CD-1 mice evaluated whether maternal administration of the antioxidative enzymes superoxide dismutase (SOD) and/or catalase conjugated with polyethylene glycol (PEG) could reduce phenytoin teratogenicity. Initial studies showed that pretreatment with PEG-SOD alone (0.5-20 KU/kg i.p. 4 or 8 h before phenytoin) actually increased the teratogenicity of phenytoin (65 mg/kg i.p. on gestational days [GD] 11 and 12, or 12 and 13) (p < .05), and appeared to increase embryonic protein oxidation. Combined pretreatment with PEG-SOD and PEG-catalase (10 KU/kg 8 or 12 h before phenytoin) was not embryo-protective, nor was PEG-catalase alone, although PEG-catalase alone reduced phenytoin-initiated protein oxidation in maternal liver (p < .05). However, time-response studies with PEG-catalase (10 KU/kg) on GDs 11, or 11 and 12, showed maximal 50-100% increases in embryonic activity sustained for 8-24 h after maternal injection (p < .05), and dose-response studies (10-50 KU/kg) at 8 h showed maximal respective 4-fold and 2-fold increases in maternal and embryonic activities with a 50 KU/kg dose (p < .05). In controls, embryonic catalase activity was about 4% of that in maternal liver, although with catalase treatment, enhanced embryonic activity was about 2% of enhanced maternal activity (p < .05). PEG-catalase pretreatment (10-50 KU/kg 8 h before phenytoin) also produced a dose-dependent inhibition of phenytoin teratogenicity, with maximal decreases in fetal cleft palates, resorptions and postpartum lethality at a 50 KU/kg dose (p < .05). This is the first evidence that maternal administration of PEG-catalase can substantially enhance embryonic activity, and that in vivo phenytoin teratogenicity can be modulated by antioxidative enzymes. Both the SOD-mediated enhancement of phenytoin teratogenicity, and the inhibition of phenytoin teratogenicity by catalase, indicate a critical role for ROS in the teratologic mechanism, and the teratologic importance of antioxidative balance.  相似文献   

9.
Curcumin (diferuloylmethane), the major yellow pigment in turmeric, has been shown to inhibit benzo[a]pyrene (BaP)-induced forestomach cancer in mice through mechanism(s) not fully understood. It is well known that while cytochrome P4501A1 (CYP1A1) and epoxide hydrolase (EH) are important in the conversion of BaP to its activated form, (+)-anti-7,8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-BaPDE], the detoxification of (+)-anti-BaPDE is accomplished by glutathione (GSH) S-transferases (GST). Therefore, it seems reasonable to postulate that curcumin may exert anti-carcinogenic activity either by inhibiting activation of BaP or (and) by enhancing the detoxification of (+)-anti-BaPDE. Administration p.o. of 2% curcumin in the diet to female A/J mice for 14 days, which has been shown to cause a significant inhibition in BaP-induced forestomach tumorigenesis, resulted in a modest but statistically significant reduction in hepatic ethoxyresorufin O-deethylase (EROD) activity, a reaction preferentially catalyzed by CYP1A1. While EROD activity could not be detected in the forestomach of either control or treated mice, curcumin feeding caused a statistically significant increase (approximately 2.3-fold) in hepatic EH and GST activities. Hepatic and forestomach GSH levels, and forestomach EH and GST activities were not affected by curcumin treatment. Even though the levels of various hepatic GST isoenzymes were significantly increased upon curcumin feeding, maximum induction was noticed for the pi class isoenzyme (mGSTP1-1), which among murine hepatic GSTs is highly efficient in the detoxification of (+)-anti-BaPDE. In conclusion, the results of the present study suggest that curcumin may inhibit BaP-induced forestomach cancer in mice by affecting both activation as well as inactivation pathways of BaP metabolism in the liver.  相似文献   

10.
Regulation of the basal and induced expression of detoxifying enzymes such as NAD(P)H:quinone oxidoreductasel (NQO1) and glutathione S-transferase (GST) by the antioxidant response element (ARE) is important for cellular protection against oxidative stress. The ARE contains AP1 and AP1-like elements and is known to bind to several leucine zipper proteins including c-Fos. Previous studies (Venugopal, R., and Jaiswal, A.K. (1996) Proc. NatL Acad. Sci. USA 93, 14960-14965) have shown that overexpression of c-Fos in transfected cells leads to repression of ARE-mediated gene expression. In the present report, we used c-Fos-/- mice and investigated the physiological (in vivo) role of c-Fos in repression of the NQO1 and GST genes expression. The analysis of enzyme activity levels showed significant increases in NQO1 and GST activities in several tissues of c-Fos-/- mice, as compared with wild type (c-Fos+/+) mice. The increases in enzyme activities were supported by Wetern analysis of respective proteins. Western analyses showed significant increases in the expression of NQO1 in kidney, liver and skin tissues of c-Fos-/- mice, as compared with wild type (c-Fos+/+) controls. Western analyses also demonstrated an increased expression of the GST Ya gene in kidney and liver tissues of the c-Fos-/-mice. These results confirm a negative (repressive) role for c-Fos in the expression of NQO1, GST Ya, and other detoxifying enzyme genes.  相似文献   

11.
Multi-center European evaluation of HIV testing on serum and saliva samples   总被引:1,自引:0,他引:1  
Sulphur dioxide (SO2) is an air pollutant implicated in the initiation of asthmatic symptoms. Glutathione (GSH) has been proposed to play a role in detoxification of SO2 through the sulfitolysis of glutathione disulphide (GSSG) to S-sulphoglutathione (GSSO3-). Rats were exposed to concentrations of SO2 between 5 and 100 ppm for 5 hr a day between 7 and 28 days. Lung injury as assessed by bronchoalveolar lavage and tissue GSH status were evaluated. SO2 5 ppm failed to elicit any lung injury or inflammatory response but did deplete GSH pools in lung, liver, heart and kidney. Activities of gamma-glutamylcysteine synthetase (GCS), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GRed) in lung were lowered relative to those in control animals. In liver, GRed activity was decreased. SO2 50 ppm exposure also failed to elicit injury or inflammation but did lower inflammatory cell numbers in the circulation. Rats exposed to 50 ppm SO2 maintained tissue GSH status, but activities of GCS, GPx, GRed and gamma-glutamyltranspeptidase in lung and hepatic GRed and GPx were significantly lower than in control rats. Unaltered GST activity in lung and liver was suggestive of an impairment of the sulfitolysis reaction in these animals, perhaps through lower substrate flux through the GPx reaction, as GSSO3- is a known inhibitor of GST in the rat. Rats exposed to 100 ppm SO2 exhibited evidence of inflammation (120-fold increase in neutrophil numbers recovered in lavage fluid) and like the 5 ppm exposed rats had lower tissue GSH concentrations and GSH-related enzyme activities in lung. We conclude that sulfitolysis of GSSG does occur in vivo during SO2 exposure and that SO2, even in the absence of pulmonary injury, is a potent glutathione depleting agent.  相似文献   

12.
Progesterone (PG) and three structurally similar synthetic progestins-norethisterone (NE), allylestrenol (AE), and dydrogesterone (DG)-have been compared for their ability to induce the formation of micronuclei and of enzyme-altered foci in the liver of female rats. In the micronucleus assay, carried out in rats given a single p.o. dose of 100 mg kg-1 3 days before partial hepatectomy and sacrificed for cell sampling 2 days later, the frequency of micronucleated hepatocytes was 3.5-fold higher than in controls with PG, 2.8-fold with DG, 2.2-fold with NE and 2.1-fold with AE, but the increase was statistically significant only for PG. In the liver foci assay, performed to evaluate the tumor initiating activity of p. o. dosing with 100 mg kg-1 once a week for 6 successive weeks, the values of the number and area of gamma-glutamyltranspeptidase-positive foci were, as compared to controls, 15.9- and 100-fold higher with NE, and 13.9- and 52-fold higher with AE, but only the increase of area produced by NE was statistically significant; PG and DG did not display in this test any activities. Considered together with previous findings, these results suggest that NE might be biotransformed in the liver into reactive species and thus behave as a weak genotoxic agent.  相似文献   

13.
Caffeine (10-40 mg/kg, p.o.) enhanced locomotor activity (LA). Administration of GABA antagonist, bicuculline (0.5-1.0 mg/kg, i.p.), potentiated this caffeine-induced increase of LA, as well as LA of control rats. Treatment with the GABA agonist, muscimol (0.25-1 mg/kg, i.p.) or dopaminergic antagonist, haloperidol (0.25-1 mg/kg, i.p.) or muscarinic receptor blocker, atropine (3.75-5 mg/kg, i.p.), or inhibitor of acetylcholine esterase physostigmine (0.05-0.30 mg/kg, i.p.) or nicotine (0.5-1.5 mg/kg, i.p.) an nicotinic receptor agonist all decreased the LA of both caffeine-treated and control rats. Haloperidol-induced reduction in caffeine-induced increase in LA was found to be withdrawn with higher dose of caffeine. The dopamine agonist L-Dopa (75-150 mg/kg, p.o.) along with carbidopa (10 mg/kg, p.o.) increased the LA in control rats and potentiated the LA of caffeine treated rats. The haloperidol attenuated the bicuculline-induced increase in LA and atropine or physostigmine attenuated the bicuculline or L-Dopa + carbidopa-induced increase in LA in both caffeine treated and control rats when those drugs were administered concomitantly with bicuculline or L-Dopa+carbidopa. These results suggest that (a) the GABAergic system has direct role in the regulation of LA, and (b) caffeine potentiates LA by antagonism of the adenosine receptor and activation of the dopaminergic system which, in turn, reduces GABAergic activity through the reduction of cholinergic system.  相似文献   

14.
15.
The effects of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) on drug-metabolizing enzymes were studied in male and female rats. 1,2,3,4-TCDD (25, 50, 100 and 200 mumol/kg) was administered by i.p. injection once. Among the cytochrome P-450 (P450)-mediated monooxygenase activities tested, 7-ethoxyresorufin O-deethylase (EROD) activities in both male and female rats, which are associated with CYP1A1, were remarkably induced by all doses of 1,2,3,4-TCDD. The relative induction to each control activity were from 3.0- to 24.5-fold and from 2.2- to 16.5-fold, respectively. Also, 1,2,3,4-TCDD increased other CYP1A-mediated monooxygenase activities such as 7-ethoxycoumarin O-deethylase (ECOD) and 7-methoxyresorufin O-demethylase (MROD) in male and female rats dose-dependently (1.4- to 4.3-fold). Western immunoblotting showed that the levels of CYP1A1 and CYP1A2 proteins in liver microsomes were increased by 1,2,3,4-TCDD. Although the activities of other P450-mediated monooxygenases, namely 7-pentoxyresorufin O-depentylase (PROD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND) and nitrosodimethylamine N-demethylase (NDAND) in both male and female rats were induced at high doses (> or = 50 mumol/kg) of 1,2,3,4-TCDD, the relative level was low compared with those of the CYP1A-mediated monooxygenase such as EROD, ECOD or MROD. In addition to P450-mediated monooxygenase, there was significant induction in the activities of the Phase II drug-metabolizing enzymes, UDP-glucuronyltransferase (UGT) activities towards 4-nitrophenol (4-NP) and 7-hydroxycoumarin (7-HC) and glutathione S-transferase (GST) towards 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB) and DT-diaphorase. These results indicate that 1,2,3,4-TCDD induces both Phase I (CYP1A-mediated monooxygenase) and Phase II drug-metabolizing enzymes (UGT, GST, DT-diaphorase) in the male and female rat liver, and that the alterations of drug-metabolizing enzyme are characteristic of PCDD toxicity.  相似文献   

16.
Protein deficiency was produced by feeding synthetic 8%-protein diet. Lithium carbonate at the dose level of 1.1g/kg diet was administered to normal and protein-deficient rats for a period of one mo. A significant inhibition in the levels of cytochrome (cyt) P450, cyt b5, glutathione (GSH), glutathione S-transferase (GST) and glutathione peroxidase (GPx), but an increase in gamma-glutamyl transpeptidase (gamma-GT), was observed in low-protein LP-fed rats. Lithium treatment to normal rats caused no significant change in the activities of cyt P450, cyt b5, GST, and GSH levels, whereas there was elevation in the activities of gamma-GT and GPx and suppression in glutathione reductase (GRd) activity. Lithium administration to LP-fed rats resulted in significant increases in the hepatic gamma-GT and GPx activities.  相似文献   

17.
To examine the mechanism of the preventive effect of tannins on the progression of carbon tetrachloride (CCl4)-induced acute liver injury in rats, sumac gall (SG) extract and gallic acid (GA) were used as substitutes for crude tannins, because SG is a kind of Chinese traditional medicinal herb containing large amounts of various tannins, and GA is one of the major constituents of SG. The protective effect of oral (p.o.) and intraperitoneal (i.p.) administration of each substance on progression of CCl4-induced hepatitis was investigated in rats. Speculating that the superoxide dismutase (SOD)-like activities (O2 radical-scavenging activities) and/or protective effects of these substances on cell membranes might play a key role in the mechanism opposing the progression of CCl4-induced hepatitis, the O2 radical-scavenging activities in liver cells and serum in rats were monitored. Both substances significantly prevented the progression of acute liver injury with both p.o. and i.p. administration. These findings suggest that the mechanism for this prevention might be due mainly to the protective effect of these substances on cell membranes rather than O2 radical-scavenging activities.  相似文献   

18.
Thioredoxin reductase is a newly identified selenocysteine-containing enzyme that catalyzes the NADPH-dependent reduction of the redox protein thioredoxin. Thioredoxin stimulates cell growth, is found in dividing normal cells, and is over-expressed in a number of human cancers. Redox activity is essential for the growth effects of thioredoxin; thus, thioredoxin reductase could be involved in regulating cell growth through its reduction of thioredoxin. In rats fed a selenium-deficient diet (<0.01 ppm) for up to 98 days, thioredoxin reductase activity was decreased, compared with that of rats fed a normal selenium diet (0.1 ppm), in lung, liver, and kidney, while thioredoxin reductase activity in the spleen and prostate was unaltered. Rats fed a high selenium diet (1.0 ppm) exhibited a 1.5-fold increase in kidney and a 2.0-fold increase in lung thioredoxin reductase activity that began to return to control values after 20 and 69 days, respectively. Liver showed a 2.1-fold increase in thioredoxin reductase activity at 20 days only. Thioredoxin reductase protein levels measured by western blotting using an antibody to human thioredoxin reductase were decreased in rats fed the selenium-deficient diet and did not increase in rats fed the high selenium diet. Rat thioredoxin reductase was shown to incorporate 75Selenium. Thus, in some tissues at least, the increase in thioredoxin reductase activity of rats fed a high selenium diet appears to be due to an increase in the specific activity of the enzyme, possibly caused by increased selenocysteine incorporation without an increase in thioredoxin reductase protein synthesis.  相似文献   

19.
The effects of motorcycle exhaust (ME) on cytochrome P-450 (P-450)-dependent monooxygenases were determined using rats exposed to the exhaust by either inhalation, intratracheal, or intraperitoneal administration. A 4-wk ME inhalation significantly increased benzo[a]pyrene hydroxylation, 7-ethoxyresorufin O-deethylation, and NADPH-cytochrome c reductase activities in liver, kidney, and lung microsomes. Intratracheal instillation of organic extracts of ME particulate (MEP) caused a dose- and time-dependent significant increase of monooxygenase activity. Intratracheal treatment with 0.1 g MEP extract/kg markedly elevated benzo[a]pyrene hydroxylation and 7-ethoxyresorufin O-deethylation activities in the rat tissues 24 h following treatment. Intraperitoneal treatment with 0.5 g MEP extract/kg/d for 4 d resulted in significant increases of P-450 and cytochrome b5 contents and NADPH-cytochrome c reductase activity in liver microsomes. The intraperitoneal treatment also markedly increased monooxygenases activities toward methoxyresorufin, aniline, benzphetamine, and erythromycin in liver and benzo[a]pyrene and 7-ethoxyresorufin in liver, kidney, and lung. Immunoblotting analyses of microsomal proteins using a mouse monoclonal antibody (Mab) 1-12-3 against rat P-450 1A1 revealed that ME inhalation, MEP intratracheal, or MEP intraperitoneal treatment increased a P-450 1A protein in the hepatic and extrahepatic tissues. Protein blots analyzed using antibodies to P-450 enzymes showed that MEP intraperitoneal treatment caused increases of P-450 2B, 2E, and 3A subfamily proteins in the liver. The ME inhalation, MEP intratracheal, or MEP intraperitoneal treatment resulted in significant increases in glutathione S-transferase activity in liver cytosols. The present study shows that ME and MEP extract contain substances that can induce multiple forms of P-450 and glutathione S-transferase activity in the rat.  相似文献   

20.
The activity of four lysosomal enzymes have been examined in liver cytoplasmic extract from guinea pigs fed three different diets: a) an ordinary diet, low in fat, high in carbohydrates; b) a semisynthetic diet containing 10% cottonseed oil (by weight) without and c) with 1% cholesterol. The cholesterol content in the liver was similar in control-fed and fat-fed animals, while there was a 10-fold increase in cholesterol + fat-fed animals, and most of this cholesterol was present as ester. We observed increased activity of beta-glucuronidase, beta-acetyl-glucosaminidase and cathepsin D during fat cholesterol feeding (diet c) while the activity of acid phosphatase decreased compared to control-fed animals. These findings probably mirror the increased hepatic accumulation of lipids and lipoproteins observed in cholesterol + fat-fed guinea pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号