首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanisms underlying the pathogenesis of aggressive lymphomas and the histological transformation of indolent variants are not well known. To determine the role of p16(INK4a) gene alterations in the pathogenesis of non-Hodgkin's lymphomas (NHLs) and the histological progression of indolent variants, we have analyzed the expression, deletions, and mutations of this gene in a series of 112 NHLs. Hypermethylation of the gene was also examined in a subset of tumors with lack of protein expression but without mutations or deletions of the gene. p16(INK4a) gene alterations were detected in 3 out of 64 (5%) indolent lymphomas but in 16 out of 48 (33%) primary or transformed aggressive variants. In the low-grade tumors, p16(INK4a) alterations were detected in 1 (4%) chronic lymphocytic leukemia (hemizygous missense mutation), 1 (6%) follicular lymphoma (homozygous deletion), and 1 (5%) typical mantle cell lymphoma (homozygous deletion). The two later cases followed an aggressive clinical evolution. In the aggressive tumors, p16(INK4a) gene alterations were observed in 2 (29%) Richter's syndromes (2 homozygous deletions), 3 (33%) transformed follicular lymphomas (1 homozygous deletion and 2 nonsense mutations), 3 (43%) blastoid mantle cell lymphomas (2 homozygous and 1 hemizygous deletions), 5 (28%) de novo large-cell lymphomas (1 homozygous deletion and 4 hypermethylations), 2 lymphoblastic lymphomas (2 homozygous deletions), and 1 of 2 anaplastic large cell lymphomas (hypermethylation). Protein expression was lost in all tumors with p16(INK4a) alterations except in the typical chronic lymphocytic leukemia (CLL) with hemizygous point mutation. Sequential samples of the indolent and transformed phase of three cases showed the presence of p16(INK4a) deletions in the Richter's syndrome but not in the CLL component of two cases, whereas in a follicular lymphoma the deletion was present in both the follicular tumor and in the diffuse large-cell lymphoma. In conclusion, these findings indicate that p16(INK4a) gene alterations are a relatively infrequent phenomenon in NHLs. However, deletions, mutations, and hypermethylation of the gene with loss of protein expression are associated with aggressive tumors and they may also participate in the histological progression of indolent lymphomas.  相似文献   

2.
The novel human pre-B cell line OZ was established from a patient with an aggressive form of non-Hodgkin's lymphoma. Karyotypic analysis of both the primary tumour and OZ cells revealed several marker chromosomes, including the t(14;18)(q32;q21) translocation, which involves the Bcl-2 gene, and alterations on chromosome 17p. Southern blot analysis found identical rearrangements in the 5' region of Bcl-2 gene in the primary tumour and OZ cells. Homozygous deletions of the p15INK4B and p16INK4A genes, however, were present only in OZ cells. Western blot analysis detected aberrant small molecular-weight p53 proteins in both cell types. In addition, OZ cells no longer expressed the CD20 antigen. These findings suggest that Bcl-2 gene rearrangement and aberrant p53 expression resulted in the original B-cell tumour. A subsequent transforming event involving the p15INK4B and p16INK4A genes may have generated more immature cells with a growth advantage during in vitro culture. The genetic alterations involving p53, p15INK4B, and p16INK4A may be implicated in the aggressive form of t(14;18)(q32;q21)-bearing tumours and their poor prognosis.  相似文献   

3.
Mantle cell lymphomas (MCL) are morphologically and immunophenotypically distinctive lymphoid neoplasms characterised by overexpression of cyclin D1. Recent studies have suggested that co-operating aberrations of cell cycle associated genes may provide a growth advantage to a tumour. To address this issue further, we investigated five typical and three aggressive (blastoid) MCL for alterations in the cell cycle regulating genes p15, p16, CDK4, Rb and p53. In 3/3 aggressive cases with cyclin D1 overexpression we found aberration of at least one additional gene. One case showed diminished expression of the retinoblastoma protein (pRb); one case harboured deletion of both p15 and p16; and one case exhibited both deletion of p16 and point mutation of p53. However, we also identified two typical cases which in addition to cyclin D1 overexpression exhibited diminished pRb expression and p15 and p16 hypermethylation, respectively. Our findings confirm and extend other recent investigations and indicate that co-operating genetic alterations of cell cycle-associated genes may contribute to the pathogenesis of MCL.  相似文献   

4.
We examined the genomic status of cyclin-dependent kinase-4 and -6 inhibitors, p16INK4,p15INK4B, and p18, in 40 primary lung cancers and 31 metastatic lung cancers. Alterations of the p16INK4 gene were detected in 6 (2 insertions and 4 homozygous deletions) of 22 metastatic non-small cell lung cancers (NSCLCs; 27%), but none were detected in 25 primary NSCLCs, 15 primary small cell lung cancers (SCLCs), or 9 metastatic SCLCs, indicating that mutation in the p16INK4 gene is a late event in NSCLC carcinogenesis. Although three intragenic mutations of the p15INK4B gene were detected in 25 primary NSCLCs (12%) and five homozygous deletions of the p15INK4B gene were detected in 22 NSCLCs (23%), no genetic alterations of the p15INK4B gene were found in primary and metastatic SCLCs. The p18 gene was wild type in these 71 lung cancers, except 1 metastatic NSCLC which showed loss of heterozygosity. We also examined alterations of these three genes and expression of p16INK4 in 21 human lung cancer cell lines. Alterations of the p16INK4 and p15INK4B genes were detected in 71% of the NSCLC cell lines (n = 14) and 50% of the NSCLC cell lines (n = 14), respectively, but there were none in the 7 SCLC cell lines studied. No p18 mutations were detected in these 21 cell lines. These results indicate that both p16INK4 and p15INK4B gene mutations are associated with tumor progression of a subset of NSCLC, but not of SCLC, and that p15INK4B mutations might also be an early event in the molecular pathogenesis of a subset of NSCLC.  相似文献   

5.
OBJECTIVE: Alterations affecting tumor suppressor genes, specifically p16INK4 and TP53, have been shown to be involved in the development of human cancer due to their important role in the control of normal cell cycle progression. As the genetic events leading to the development of pediatric osteosarcoma remain partially unclear, we have tested the possibility that a significant number of pediatric osteosarcoma patients harbor mutations in these genes. PATIENTS AND METHODS: We have analyzed 64 samples (fresh tissues, paraffin embedded biopsies and peripheral blood lymphocytes) corresponding to 38 pediatric osteosarcoma patients. TP53 mutations were analyzed by DGGE (Denaturing Gradient Gel Electrophoresis) analysis of exons 5 through 8. We searched for deletions in the p16INK4 gene by PCR (Polymerase Chain Reaction) analysis and point mutations were screened by means of SSCP (Single Strand Conformation Polymorphisms). RESULTS: Our analysis showed that 18.4% of the samples harbored mutations in the coding region of TP53 and that 7% had a homozygous deletion of the p16INK4 gene. Our results suggest that p16INK4 deletions may constitute a bad prognostic factor and that TP53 alterations may be correlated, although not statistically, with reduced survival time. CONCLUSIONS: Mutations of the TP53 and deletion of p16INK4 tumor suppressor genes seem to be involved in the development of pediatric osteosarcoma. Moreover, alterations of these genes may constitute a prognostic factor related with poor prognosis or decreased survival time.  相似文献   

6.
A high incidence of gene mutations or deletions of p16INK4, a cell cycle regulator which inhibits the activity of cyclin-dependent kinase 4/cyclin D complex and blocks the G1-to-S transition, has been reported in pancreato-biliary tract cancers. In order to investigate p16INK4 gene alterations in sporadic ampullary carcinomas, 17 sporadic ampullary carcinomas were examined. After histological diagnosis, DNA samples extracted separately from both cancerous and normal paraffin-embedded tissues were investigated. Loss of heterozygosity (LOH) was investigated utilizing 3 microsatellite markers on 9p21-22, and a mutational analysis was performed by cloning and sequencing. LOH was observed in 3 cases (17.6%) and somatic mutations with retention of heterozygosity were found in 7 cases (41.2%). Of note was that two mutations resulted in truncated incomplete proteins and one was a point mutation at the consensus site in the conserved ankyrin repeats, which would be crucial for function. Although two-hit inactivation was not evident in any of the mutation cases and further investigation would be needed to elucidate the role of altered p16INK4, these results suggest that the p16INK4 gene mutations are relatively frequent and its inactivation might be important in ampullary carcinogenesis.  相似文献   

7.
8.
Homozygous deletions of the tumor suppressor gene p16INK4A and deficiency of methylthioadenosine phosphorylase (MTAP), both located on chromosome 9p21, have been independently reported in non-small cell lung cancer (NSCLC). To determine the frequency of co-deletion of these two genes, we investigated 50 samples of primary NSCLC using a quantitative PCR-ELISA. All specimens were fixed in formalin, paraffin embedded and stored until assayed. Histologic subtypes included 25 adenocarcinomas (50%), 21 squamous cell carcinomas (42%) and four large cell carcinomas (8%). Homozygous deletions of MTAP exon 8 could be detected in 19 of 50 NSCLC samples (38%). Adenocarcinoma (11 of 25, 44%) showed a higher deletion frequency than squamous cell carcinoma (six of 21, 29%). In contrast, homozygous p16INK4A deletions were detected in only nine of 50 (18%) samples using specific primers for p16INK4A exon 1alpha. No difference between the histological subtypes and p16INK4A deletion frequency was observed. We further investigated the ten samples with MTAP deletions but intact p16INK4A exon 1alpha with primers specific for p16INK4A exon 3, the exon nearest to MTAP exon 8. Interestingly, none of the ten samples had deletion of the p16INK4A exon 3 coding region. Fine mapping analysis performed in ten samples showed a frequent breakpoint between MTAP exon 4 and exon 5. In addition, p16 protein expression could not be detected in five out of six samples with intact p16 but deleted MTAP locus. These data show a high frequency of homozygous MTAP deletions in NSCLC which is associated with detectable co-deletion of p16INK4A in only half of the cases. This result suggests the existence either of another tumor suppressor gene telomeric of p16INK4A or of deletions involving 3'-untranslated (3'-UTR) regulatory regions of p16INK4A that can interfere with its expression or function.  相似文献   

9.
10.
The p15(INK4B), p16(INK4) and p18 genes are members of the gene family coding for inhibitors of cyclin-dependent kinases 4 and 6. p15(INK4B) and p16(INK4) are located at 9p21, a chromosomal region frequently deleted in many human neoplasms. To examine the role of these 3 genes in lung carcinogenesis, somatic mutations within the genes were analyzed by single-strand conformation polymorphism and DNA sequencing in 71 non-small-cell lung cancer (NSCLC) samples. Six somatic mutations in the p16(INK4) gene and 3 cases with a polymorphic allele were observed. Loss of heterozygosity in the p18 gene was found in 1 sample. We did not find any intragenic mutations in the p15(INK4B) or p18 genes. We conclude that p16(INK4) mutations play a role in the formation of some NSCLCs, whereas the involvement of p15(INK4B) and p18 is uncommon.  相似文献   

11.
Gliomas are tumors of the central nervous system that may be inherited in some patients. The gene(s) responsible for the clustering of gliomas in families have not yet been identified. Molecular studies of sporadic high-grade gliomas have revealed mutations or deletions of the genes encoding the protein kinase inhibitors p16(INK4A) and p15(INK4B) in a large proportion of tumors. Moreover, those tumors without deletions frequently display gene amplification and/or over-expression of mRNA encoding the protein kinase cdk4. We hypothesized that germ-line mutations in the p16(INK4A), p15(INK4B), or CDK4 genes might contribute to some cases of familial gliomas. To address this issue, we analyzed 36 kindreds with a predisposition to glial tumors. Genomic DNA from index members of these families was screened by PCR-single-strand conformational polymorphism analysis. We did not detect any functional mutations in the p16(INK4A), p15(INK4B), or CDK4 genes, although two individuals did have a previously described A140T polymorphism in p16(INK4A). Thus, despite the association between the sporadic forms of high-grade glioma and abnormalities of p16(INK4A), p15(INK4B), or CDK4, we found no evidence that germ-line mutations in the coding region of these three genes predispose to inherited glial tumors.  相似文献   

12.
The CDKN2A gene located on chromosome region 9p21 encodes the cyclin-dependent kinase-4 inhibitor p16/INK4A, a negative cell cycle regulator. We analyzed p16/INK4A expression in different types of non-Hodgkin's lymphoma to determine whether the absence of this protein is involved in lymphomagenesis, while also trying to characterize the genetic events underlying this p16/INK4A loss. To this end, we investigated the levels of p16/INK4A protein using immunohistochemical techniques in 153 cases of non-Hodgkin's lymphoma, using as reference the levels found in reactive lymphoid tissue. The existence of gene mutation, CpG island methylation, and allelic loss were investigated in a subset of 26 cases, using single-strand conformational polymorphism and direct sequencing, Southern Blot, polymerase chain reaction, and microsatellite analysis, respectively. Loss of p16/INK4A expression was detected in 41 of the 112 non-Hodgkin's lymphomas studied (37%), all of which corresponded to high-grade tumors. This loss of p16/INK4A was found more frequently in cases showing tumor progression from mucosa-associated lymphoid tissue low-grade lymphomas (31 of 37) or follicular lymphomas (4 of 4) into diffuse large B-cell lymphomas. Analysis of the status of the p16/INK4A gene showed different genetic alterations (methylation of the 5'-CpG island of the p16/INK4A gene, 6 of 23 cases; allelic loss at 9p21, 3 of 16 cases; and nonsense mutation, 1 of 26 cases). In all cases, these events were associated with loss of the p16/INK4A protein. No case that preserved protein expression contained any genetic change. Our results demonstrate that p16/INK4A loss of expression contributes to tumor progression in lymphomas. The most frequent genetic alterations found were 5'-CpG island methylation and allelic loss.  相似文献   

13.
14.
It is still unclear whether the sporadic form of dysplastic nevi (SDN) represents a premalignant lesion of malignant melanoma and whether genetic alterations are involved in the development of SDN. To determine whether p16INK4a and p53 genetic abnormalities could be associated with development of SDN, nevus cell nests were procured selectively from H & E-stained slide sections by using a modified microdissection technique and were screened for the presence of mutations and loss of heterozygosity (LOH) of p16INK4a and p53 genes using a polymerase chain reaction-based LOH, single-strand conformation polymorphism, and direct DNA sequencing analyses. Hemizygous deletion was detected in 9 of 12 informative cases (75%) for 9p21-22 (p16INK4a) at one or more loci and 60% (6/10) for 17p13 (p53). As for mutation, we found 3 missense mutations and 1 mutation in the first intron in p16INK4a and 2 missense mutations in p53. Among these mutations in p16INK4a and p53, 5 of 6 mutations were of the C:G to T:A transitional type; this is known to be related to ultraviolet radiation as previously confirmed in other skin cancers. This indicates that p16INK4a and p53 genetic alterations may play an important role in the evolution of SDN and may represent an early event in the development of malignant melanoma. Furthermore, ultraviolet radiation might be the predominant etiologic agent in the development of SDN.  相似文献   

15.
16.
The recently discovered p15INK4B and p16INK4 genes encoding cell cycle regulating proteins, map to a region on chromosome 9p21 that is commonly deleted in a variety of malignant diseases. The p16INK4 gene has now been shown to be a tumor suppressor gene. It is frequently inactivated in cancer and is possibly the second most often mutated gene in human malignant disease after p53. The role of the p15INK4B and p16INK4 genes in hematologic malignancies has been the subject of intense investigation since their discovery. In this review we address the function and possible role in tumorigenesis of the p15INK4B and p16INK4 genes and discuss their significance as prognostic markers in hematologic malignancies.  相似文献   

17.
BACKGROUND: The cyclin-dependent kinase inhibitor gene p21Waf1/Cip1 plays a role in signaling cellular growth arrest. In response to DNA damage, p21 is induced by the p53 gene, thereby playing a direct role in mediating p53-induced G1 arrest. Alterations in this gene may adversely affect regulation of cellular proliferation and increase susceptibility for cancer. Two polymorphisms have previously been characterized in the p21 gene: a C-->A transversion at codon 31 (ser-->arg) and a C-->T transition 20 nucleotides downstream from the 3' end of exon 3. METHODS: The codon 31 polymorphism in exon 2 of the p21 gene was identified by restriction digestion (Alw26I) of products amplified by polymerase chain reaction (PCR). The polymorphism downstream from exon 3 of the p21 gene was identified by single strand conformation polymorphism (SSCP) analysis of PCR amplified products and was confirmed by PstI enzyme restriction digestion. DNA variant alleles were confirmed by direct DNA sequencing. The entire coding region and the promoter region (p53 binding domain) of the p21 gene were screened for mutations by SSCP analysis or DNA sequencing. RESULTS: The two polymorphisms were found in 18 of 96 tumor samples lacking p53 alterations (18.8%). Nine of 54 prostate adenocarcinoma samples (16.7%) contained both p21 variants, whereas 9 of 42 squamous cell carcinomas of the head and neck (21.4%) displayed both polymorphisms. Of the 110 controls examined, 10 (9.1%) had both alterations. Both p21 polymorphisms occurred together in all samples examined and there was no indication of mutation in the coding region of the p21 gene or in the p53 binding domain of the promoter region. CONCLUSIONS: These data suggest that p21 gene variants may play a role in increased susceptibility for the development of some types of cancer. In the current study, the authors demonstrated that the occurrence of these two polymorphisms is increased in prostate adenocarcinoma and squamous cell carcinoma of the head and neck. The polymorphic sites may be directly responsible for this apparent increased susceptibility or they may be linked to regulatory region alterations.  相似文献   

18.
19.
Deregulated expression of one or more growth control genes including p16, p53, EGF receptor (EGFR), MDM2 or Bcl-2 may contribute to the treatment resistance phenotype of GBM and generally poor patient survival. Clinically, GBM have been divided into two major groups defined by (1) histologic progression from a low grade tumor ("progressive" or "secondary" GBM) contrasted with (2) those which show initial clinical presentation without a prior history ("de novo" or "primary" GBM). Using molecular genetic analysis for p53 gene mutations together with immunophenotyping for overexpression of EGFR, up to four GBM variants can be distinguished, including the p53+/EGFR- progressive or the p53-/EGFR+ de novo variant. We examined the survival of 80 adult patients diagnosed with astrocytic GBM stratified by age category (>40, 41-60 or 61-80) to determine whether alterations in any one given growth control gene or whether different genetic variants of GBM (progressive versus de novo) were associated with different survival outcomes. Survival testing using Kaplan-Meier plots for GBM patients with or without altered expression of p16, p53, EGFR, MDM2 or Bcl-2 showed no significant differences by age group or by gene expression indicating a lack of prognostic value for GBM. Also the clinical outcome among patients with GBM showed no significant differences within each age category for any GBM variant including the progressive and de novo GBM variants indicating similar biologic behavior despite different genotypes. Using a pairwise comparison, one-third of the GBM with normal p16 expression showed accumulation of MDM2 protein and this association approached statistical significance (0.01 < P < 0.05) using the Bonferroni procedure. These GBM may represent a variant in which the p19ARF/MDM2/p53 pathway may be deregulated rather than the p16/cyclin D-CDK4/Rb pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号