首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
林尚伟  林岩 《控制工程》2008,15(3):235-238
讨论了快速路匝道系统中智能控制技术问题。针对匝道系统特点,分析了模糊控制、人工神经网络、遗传算法的适用性,提出了一种基于模糊控制律的遗传神经匝道协调控制方案。在该方案中,对模糊控制输入输出数据进行线性修正,使用修正后的数据完成遗传神经网络训练,并用神经网络代替模糊控制器对匝道系统进行控制。给出了神经网络结构和遗传算法流程,并结合宏观交通流模型进行系统仿真。仿真结果表明,与模糊控制相比,控制效果显著提高。  相似文献   

2.
Most of the research in statistical process control has been focused on monitoring the process mean. Typically, it is also important to detect variance changes as well. This paper presents a neural network-based approach for detecting bivariate process variance shifts. Some important implementation issues of neural networks are investigated, including analysis window size, number of training examples, sample size, training algorithm, etc. The performance of the neural network, in terms of the ARL and run length distribution, is compared with that of traditional multivariate control charts. Through rigorous evaluation and comparison, our research results show that the proposed neural network performs substantially better than the traditional generalized variance chart and might perform better than the adaptive sizes control charts in the case that the out-of-control covariance matrix is not known in advance.  相似文献   

3.
Neural networks for control systems   总被引:1,自引:0,他引:1  
  相似文献   

4.
The behavior of a multivariable predictive control scheme based on neural networks applied to a model of a nonlinear multivariable real process, consisting of a pressurized tank is investigated in this paper. The neural scheme consists of three neural networks; the first is meant for the identification of plant parameters (identifier), the second one is for the prediction of future control errors (predictor) and the third one, based on the two previous, compute the control input to be applied to the plant (controller). The weights of the neural networks are updated on-line, using standard and dynamic backpropagation. The model of the nonlinear process is driven to an operation point and it is then controlled with the proposed neural control scheme, analyzing the maximum range over the neural control works properly.  相似文献   

5.
考虑粒子群优化算法在不确定系统的自适应控制中的应用。神经网络在不确定系统的自适应控制中起着重要作用。但传统的梯度下降法训练神经网络时收敛速度慢,容易陷入局部极小,且对网络的初始权值等参数极为敏感。为了克服这些缺点,提出了一种基于粒子群算法优化的RBF神经网络整定PID的控制策略。首先,根据粒子群算法的基本原理提出了优化得到RBF神经网络输出权、节点中心和节点基宽参数的初值的算法。其次,再利用梯度下降法对控制器参数进一步调节。将传统的神经网络控制与基于粒子群优化的神经网络控制进行了对比,结果表明,后者有更好逼近精度。以PID控制器参数整定为例,对一类非线性控制系统进行了仿真。仿真结果表明基于粒子群优化的神经网络控制具有较强的鲁棒性和自适应能力。  相似文献   

6.
7.
Gu  Yajuan  Yu  Yongguang  Wang  Hu 《Neural computing & applications》2019,31(10):6039-6054

In this paper, the global projective synchronization for fractional-order memristor-based neural networks with multiple time delays is investigated via combining open loop control with the time-delayed feedback control. A comparison theorem for a class of fractional-order systems with multiple time delays is proposed. Based on the given comparison theorem and Lyapunov method, the synchronization conditions are derived under the framework of Filippov solution and differential inclusion theory. Several feedback control strategies are given to ensure the realization of complete synchronization, anti-synchronization and the stabilization for the fractional-order memristor-based neural networks with time delays. Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.

  相似文献   

8.
This paper discusses a model refernce adaptive (MRAC) position/force controller using proposed neural networks for two co-operating planar robots. The proposed neural network is a recurrent hybrid network. The recurrent networks have feedback connections and thus an inherent memory for dynamics, which makes them suitable for representing dynamic systems. A feature of the networks adopted is their hybrid hidden layer, which includes both linear and nonlinear neurons. On the other hand, the results of the case of a single robot under position control alone are presented for comparison. The results presented show the superior ability of the proposed neural network based model reference adaptive control scheme at adapting to changes in the dynamics parameters of robots.  相似文献   

9.
In this study, automation of the circuit board assembly process is considered using artificial neural networks with knowledge-based systems. Basic issues in achieving intelligent control that can adapt to changing conditions in the assembly process are discussed. The feasibility of using neural networks for pattern recognition and optimum component insertion sequence generation is examined. The study provides a basic foundation for designing a conceptual architecture for adaptive intelligent control of circuit board assembly. Real-time testing of component recognition is conducted using adaptive resonance theory (ART 1) as a neural network paradigm.  相似文献   

10.
This paper presents a study on the optimisation control of a reactive polymer composite moulding process using ant colony optimisation and bootstrap aggregated neural networks. In order to overcome the difficulties in developing accurate mechanistic models for reactive polymer composite moulding processes, neural network models are developed from process operation data. Bootstrap aggregated neural networks are used to enhance model prediction accuracy and reliability. Ant colony optimisation is able to cope with optimisation problems with multiple local optima and is able to find the global optimum. Ant colony optimisation is used in this study to find the optimal curing temperature profile. In order to enhance the reliability of the optimisation control policy, model prediction confidence bound offered by bootstrap aggregated neural networks is incorporated in the optimisation objective function so that unreliable predictions are penalised. The proposed method is tested on a simulated reactive polymer composite moulding process.  相似文献   

11.
The effective recognition of unnatural control chart patterns (CCPs) is one of the most important tools to identify process problems. In multivariate process control, the main problem of multivariate quality control charts is that they can detect an out of control event but do not directly determine which variable or group of variables has caused the out of control signal and how much is the magnitude of out of control. Recently machine learning techniques, such as artificial neural networks (ANNs), have been widely used in the research field of CCP recognition. This study presents a modular model for on-line analysis of out of control signals in multivariate processes. This model consists of two modules. In the first module using a support vector machine (SVM)-classifier, mean shift and variance shift can be recognized. Then in the second module, using two special neural networks for mean and variance, it can be recognized magnitude of shift for each variable simultaneously. Through evaluation and comparison, our research results show that the proposed modular performs substantially better than the traditional corresponding control charts. The main contributions of this work are recognizing the type of unnatural pattern and classifying the magnitude of shift for mean and variance in each variable simultaneously.  相似文献   

12.
Neural networks are currently finding practical applications ranging from ‘soft’ regulatory control in consumer products to accurate control of non-linear plant in the process industries. This paper describes the application of neural networks to modelling and control of a prototype underwater vehicle, as an example of a system containing severe non-linearities. The most common implementation strategy for neural control is model predictive control, where a model of the process is developed first and is used off-line to design an appropriate compensator. The accuracy and robustness of this control strategy relies on the quality of the non-linear process model, in particular its ability to predict the plant response accurately multiple-steps ahead. In this paper, several neural network architectures are used to evaluate a long-range model predictive control structure, both in simulation and for on-line control of vehicle depth, achieving accurate control with a smooth actuator signal.  相似文献   

13.
基于反馈神经网络的动态化工过程建模   总被引:12,自引:3,他引:9  
针对非线性动态化工过程建模存在的问题,提出了一种新的反馈神经网络结构,并将状态反馈、时间序列延尺以及集中节点的概念结合起来,用于提高反馈神经网络的性能,同时又使得网络结构不至于太复杂,在用此网络结构建模的时间,成功地将BP算法用一网络模型的训练。文中将这种反馈神经网络结构分别对一个单输入单输出(SISO)的非线笥动态系统和一个多输入单输出(SIMO)的连续全混釜(CSTR)模型进行建模,并将所得模型与基于表态BP神经神经所得的模型在模型输出精度和抗干扰性等方面进行了比较,证明了该反馈神经在动态过程建模中能够比静态BP模型更好地反映出动态过程的输入输出关系,并具有一定的抗干扰能力。  相似文献   

14.
In industrial process control, some product qualities and key variables are always difficult to measure online due to technical or economic limitations. As an effective solution, data-driven soft sensors provide stable and reliable online estimation of these variables based on historical measurements of easy-to-measure process variables. Deep learning, as a novel training strategy for deep neural networks, has recently become a popular data-driven approach in the area of machine learning. In the present study, the deep learning technique is employed to build soft sensors and applied to an industrial case to estimate the heavy diesel 95% cut point of a crude distillation unit (CDU). The comparison of modeling results demonstrates that the deep learning technique is especially suitable for soft sensor modeling because of the following advantages over traditional methods. First, with a complex multi-layer structure, the deep neural network is able to contain richer information and yield improved representation ability compared with traditional data-driven models. Second, deep neural networks are established as latent variable models that help to describe highly correlated process variables. Third, the deep learning is semi-supervised so that all available process data can be utilized. Fourth, the deep learning technique is particularly efficient dealing with massive data in practice.  相似文献   

15.
This paper presents a reliable multi-objective optimal control method for batch processes based on bootstrap aggregated neural networks. In order to overcome the difficulty in developing detailed mechanistic models, bootstrap aggregated neural networks are used to model batch processes. Apart from being able to offer enhanced model prediction accuracy, bootstrap aggregated neural networks can also provide prediction confidence bounds indicating the reliability of the corresponding model predictions. In addition to the process operation objectives, the reliability of model prediction is incorporated in multi-objective optimisation in order to improve the reliability of the obtained optimal control policy. The standard error of the individual neural network predictions is taken as the indication of model prediction reliability. The additional objective of enhancing model prediction reliability forces the calculated optimal control policies to be within the regions where the model predictions are reliable. By such a means, the resulting control policies are reliable. The proposed method is demonstrated on a simulated fed-batch reactor and a simulated batch polymerisation process. It is shown that by incorporating model prediction reliability in the optimisation criteria, reliable control policy is obtained.  相似文献   

16.
一种基于模糊径向基函数神经网络的自学习控制器   总被引:3,自引:0,他引:3  
提出了一种新型的基于模糊径向基函数 (RBF)的神经网络学习控制器 ,并应用于电液伺服系统 .由于RBF网络和模糊推理系统具有函数等价性 ,采用模糊经验值方法选取网络中心值和基函数数目 .与一般的神经网络自学习控制器不同 ,以系统动态误差作为网络输入量 ,RBF神经网络控制器学习的是整个系统的动态逆过程 ,因而控制性能明显提高 .对电液位置伺服系统的仿真和实验结果表明 ,该控制方案可以有效提高系统的控制精度和自适应能力  相似文献   

17.
针对过程神经网络时空聚合运算机制复杂、学习周期长的问题,提出了一种基于数据并行的过程神经网络训练算法。该方法基于梯度下降的批处理训练方式,应用MPI并行模式进行算法设计,在局域网内实现多台计算机的机群并行计算。文中给出了基于数据并行的过程神经网络训练算法和实现机制,对不同规模的训练函数样本集和进程数进行了对比实验,并对加速比、并行效率等算法性质进行了分析。实验结果表明,根据网络和样本规模适当选取并行粒度,算法可较大提高过程神经网络的训练效率。  相似文献   

18.
Multi-variable generalized predictive control algorithm has obtained great success in process industries. However, it suffers from a high computational cost because the multi-stage optimization approach in the algorithm is time-consuming when constraints of the control system are considered. In this paper, a dual neural network is employed to deal with the multi-stage optimization problem, and bounded constraints on the input and output signals of the control system are taken into account. The dual neural network has many favorable features such as simple structure, rapid execution, and easy implementation. Therefore, the computation efficiency, in comparison with the consecutive executions of numerical algorithms on digital computers, is increased dramatically. In addition, the dual network model can yield the exact optimum values of future control signals while many other neural networks only obtain the approximate optimal solutions. Hence the multi-variable generalized predictive control algorithm based on the dual neural network is suitable for industrial applications with the real-time computation requirement. Simulation examples are given to demonstrate the efficiency of the proposed approach.  相似文献   

19.
This paper presents the use of inverse neural networks (INN) for temperature control of a biochemical reactor and its effect on ethanol production. The process model is derived indicating the relationship between temperature, pH and dissolved oxygen. Using fundamental model obtained data sets; an inverse neural network has been trained using the back-propagation learning algorithm. Two types of temperature profile are used to compare the performance of the INN and conventional PID controllers. These controllers have been simulated in MATLAB for a quantitative comparison. The results obtained by the neural network based INN controller and by the PID controller are presented and compared. There is an improvement in the performance of INN controller in settling time and dead time and steady state error over the PID controller.  相似文献   

20.
The final step in zinc hydrometallurgy is the electrolytic process, which involves passing an electrical current through insoluble electrodes to cause the decomposition of an aqueous zinc sulfate electrolyte and the deposition of metallic zinc at the cathode. For the electrolytic process studied, the most important process parameters for control are the concentrations of zinc and sulfuric acid in the electrolyte. This paper describes an expert control system for determining and tracking the optimal concentrations of zinc and sulfuric acid, which uses neural networks, rule models and a single-loop control scheme. The system is now being used to control the electrolytic process in a hydrometallurgical zinc plant. In this paper, the system architecture, which features an expert controller and three single-loop controllers, is first explained. Next, neural networks and rule models are constructed based on the chemical reactions involved, empirical knowledge and statistical data on the process. Then, the expert controller for determining the optimal concentrations is designed using the neural networks and rule models. The three single-loop controllers use the PI algorithm to track the optimal concentrations. Finally, the results of actual runs using the system are presented. They show that the system provides not only high-purity metallic zinc, but also significant economic benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号