首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim to develop a novel water-soluble modified chitosan nanoparticle with tuned size and improved antibacterial activity, quaternized carboxymethyl chitosan/poly(amidoamine) dendrimers (CM-HTCC/PAMAM) were synthesized. Firstly low-generation amino-terminated poly(amidoamine) (PAMAM) dendrimers were prepared via repetitive reactions between Michael addition and amidation, which were then employed for modifying quaternized carboxymethyl chitosan (CM-HTCC). Prior to the reaction of CM-HTCC with PAMAM, carboxylic groups in CM-HTCC were activated with EDC/NHS in order to enhance the reaction efficiency. FT-IR, 1H NMR, elemental analysis and XRD were performed to characterize CM-HTCC/PAMAM dendrimers. Turbidity measurements showed that CM-HTCC/PAMAM dendrimers had good water-solubility. TEM images indicated that CM-HTCC/PAMAM dendrimers existed as smooth and spherical nanoparticles in aqueous solution. The results of antibacterial activity explored that CM-HTCC/PAMAM dendrimer nanoparticles displayed higher antibacterial activity against Gram-negative bacteria Escherichia coli (E. coli), whereas they showed much less efficiency against Gram-positive bacteria Staphylococcus aureus (S. aureus) compared to quaternized chitosan (HTCC).  相似文献   

2.
Here, we report the use of amine-terminated poly(amidoamine) (PAMAM) dendrimers as adhesion promoters between vapor-deposited Au films and Si-based substrates. This method is relatively simple, requiring only substrate cleaning, dipping, and rinsing. Proof of concept is illustrated by coating glass slides and single-crystal Si wafers with monolayers of PAMAM dendrimers and then evaporating adherent, 150-nm-thick Au films atop the dendritic adhesion promoter. Scanning tunneling microscopy and cyclic voltammetry have been used to assess the surface roughness and electrochemical stability of the Au films. The effectiveness of the dendrimer adhesion layer is demonstrated using standard adhesive-tape peel tests.  相似文献   

3.
用UV-vis、FT-IR光谱研究了HAuCl4和酯端基聚酰胺胺(PAMAM)树形分子在N,N-二甲基甲酰胺(DMF)溶剂中的相互作用,提出HAuCl4与树形分子之间的络合机理:[AuCl4]^-离子与质子化叔胺基团形成离子对,Au^3 离子与PAMAM树形分子上的酯基和酰胺基团形成配位作用。在DMF溶剂中酯端基PAMAM树形分子与HAuCl4配位后用柠檬酸钠还原形成金纳米粒子,UV-vis光谱和TEM图像分析表明了随树形分子代数的增加,金纳米粒子的直径减小,并提出了树形分子-金纳米复合物的结构模型:(1)较低代数的树形分子环绕在金粒子的外围;(2)在较高代数的树形分子空腔内部封装金纳米粒子。  相似文献   

4.
The generation 4-poly-amidoamine-dendrimers (PAMAM G4 dendrimer, P) was conjugated to Tat peptide (Tat, T), a cell-penetrating peptide, in search of an efficient anti-tumor drug delivery vehicle for cancer therapy. In this study, we synthesized BODIPY-labeled Tat-Conjugated PAMAM dendrimers (BPTs) as a novel nanosized anticancer drug carriers and systemically investigated their biodistribution and the tumor accumulation in Sarcoma 180-bearing mice. In addition, the uptake and the cytotoxicity to S180 cells of BPTs thereof were evaluated. The unmodified dendrimer (BP) showed a soon clearance from the blood stream and nonspecific accumulation in tumor. In contrast, the Tat-modified dendrimer, BPT(64) with appropriate particle size showed a better retention in blood and could be accumulated effectively in tumor tissue via the enhanced permeability and retention (EPR) effect. Moreover, BPTs with a high Tat modification rate was accumulated more effectively in tumor tissue. In vitro experiments, these BPTs displayed low cytotoxicity on S180 cells and high uptake to S180 cells. These findings indicate that the nanoparticulate system on the basis of Tat-conjugated PAMAM dendrimers is safer and effective in the concentration range (below 20?μg/ml) to be used as a carrier of anti-tumor drugs for tumor targeting by intravenous administration.  相似文献   

5.
Alkyl groups of n-octadecyltrimethoxysilane (ODS) in a self-assembled monolayer on a silicon substrate were oxidized to carboxyl groups by partial irradiation of vacuum ultra-violet light under the photomask, producing a COOH/ODS line pattern. After active esterification of carboxyl groups, two kinds of amine-terminated dendrimers, poly(propyleneimine) and poly(amido amine) (PAMAM) dendrimers, were immobilized on a COOH line through amide-bond so that photolithographic dendrimer/ODS pattern was finally fabricated. Preparation was certified by atomic force microscopy (AFM) and surface-enhanced infrared absorption spectroscopy at transmission mode. Adsorption of linear macromolecules was examined on PAMAM dendrimer/ODS pattern. After adsorption of poly-L-glutamic acid (PGA) at a pH below alpha-helix--random coil transition, rod-shape texture was observed only on the dendrimer line in an AFM image. This texture is an aggregate of alpha-helical PGA. Sodium hyaluronate and DNA were also adsorbed selectively on the dendrimer line, keeping the line profile, although characteristic textures were not observed.  相似文献   

6.
The morphology and size of hydroxyapatite Ca10(PO4)6(OH)2 (denoted HAP) can be controlled under hydrothermal treatment assisted with different dendrimers, such as carboxylic terminated poly(amidoamine) (PAMAM) and polyhydroxy terminated PAMAM. The structure and morphology were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). IR spectra were also used to investigate the complexation of Ca2+ with PAMAM. The results revealed that the inner cores of the PAMAM dendrimers are hydrophilic and potentially open to calcium ions, since interior nitrogen moieties serve as complexation sites, especially in case of the polyhydroxy terminated PAMAM. And the reasonable mechanism of crystallization was proposed that it can be attributed to the localization of nucleation site: external or interior PAMAM. Additionally, the PAMAM dendrimer with carboxylic and polyhydroxy groups has an effective influence on the size and shape of hydroxyapatite (HAP) nanostructures. Different crystal morphology was accomplished by adsorption of different dendrimers onto specific faces of growing crystals, altering the relative growth rates of the different crystallographic faces and leading to different crystal habits.  相似文献   

7.
The potentiometric response characteristics of polycation-sensitive membrane electrodes toward two classes of polycationic dendrimers are examined. Using appropriately formulated polymer membrane electrodes composed of a dinonylnaphthalenesulfonate (DNNS) salt in a plasticized polyurethane matrix, it is shown that poly(amidoamine) (PAMAM) and poly(propylenimine) (PPI) dendrimers are readily detected at submicrogram per milliliter levels via a nonequilibrium response mechanism. The relationship between the total EMF response (at equilibrium) and the specific dendrimer structure is also examined. For both the PAMAM and PPI species, it is shown that the total EMF response does not change significantly with dendrimer generation number; however, the nonequilibrium analytically useful response curves are shifted to higher mass concentrations as the generation number is increased. The relative contributions of the terminal primary amines and the interior tertiary amines of the dendrimers to the observed EMF response are investigated by synthesis of various dendrimer derivatives (acetylated, quaternized, etc.). By comparing the total EMF responses for these derivatives as a function of sample pH, it is demonstrated that the lipophilic cation exchanger (DNNS) within the membrane phase can likely interact electrostatically with both protonated forms of the terminal primary amines and interior tertiary amines of the dendrimer structures. The practical application of the nonequilibrium potentiometric detection of dendrimers for monitoring their interaction with DNA is also demonstrated.  相似文献   

8.
Catalytic activity of Au-Pt, Au-Pd, and Pt-Pd dendrimer nanocomposites for reduction of p-nitrophenol was investigated in water. The bimetallic dendrimer nanocomposites were prepared by simultaneous reduction with sodium borohydride in the presence of poly(amidoamine) (PAMAM) dendrimers with amine and carboxyl terminal groups. Average diameters of the obtained particles were 2-4 nm by transmission electron microscopy. From UV-vis spectroscopy, it was found that the particles were not mixtures of monometallic particles but binary ones. X-ray photoelectron spectroscopy showed that formation of binary composite particles prevents palladium atoms from oxidation. The Au-Pd and Pt-Pd binary particles exhibited higher catalytic activity than monometallic ones. On the other hand, catalytic activity of Au-Pt binary particle was comparable to that of platinum nanoparticles.  相似文献   

9.
Zeng X  Pan S  Li J  Wang C  Wen Y  Wu H  Wang C  Wu C  Feng M 《Nanotechnology》2011,22(37):375102
Non-viral gene delivery systems based on cationic polymers have faced limitations related to their relative low gene transfer efficiency, cytotoxicity and system instability in vivo. In this paper, a flexible and pompon-like dendrimer composed of poly (amidoamine) (PAMAM) G4.0 as the inner core and poly (L-glutamic acid) grafted low-molecular-weight polyethylenimine (PLGE) as the surrounding multiple arms was synthesized (MGI dendrimer). The novel MGI dendrimer was designed to combine the merits of size-controlled PAMAM G4.0 and the low toxicity and flexible chains of PLGE. In phosphate-buffered saline dispersions the well-defined DNA/MGI complex above a N/P ratio of 30 showed good stability with particle sizes of approximately 200 nm and a comparatively low polydispersity index. However, the particle size of the DNA/25 kDa polyethylenimine (DNA/PEI 25K) complex was larger than 700 nm under the same salt conditions. The shielding of the compact amino groups at the periphery of flexible PAMAM and biocompatible PLGE chains in MGI resulted in a dramatic decrease of the cytotoxicity compared to native PAMAM G4.0 dendrimer. The in vitro transfection efficiency of DNA/MGI dendrimer complex was higher than that of PAMAM G4.0 dendrimer. Importantly, in serum-containing medium, DNA/MGI complexes at their optimal N/P ratio maintained the same high levels of transfection efficiency as in serum-free medium, while the transfection efficiency of native PAMAM G4.0, PEI 25K and Lipofectamine 2000 were sharply decreased. In vivo gene delivery of pVEGF165/MGI complex into balloon-injured rabbit carotid arteries resulted in significant inhibition of restenosis by increasing VEGF165 expression in local vessels. Therefore, the pompon-like MGI dendrimer may be a promising vector candidate for efficient gene delivery in vivo.  相似文献   

10.
Artificial vesicles or liposomes composed of lipid bilayers have been widely exploited as building blocks for artificial membranes, in attempts to mimic membrane interaction with drugs and proteins and to investigate drug delivery processes. In this study we report on the immobilization of liposomes of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) in layer-by-layer (LbL) films, alternated with poly(amidoamine) G4 (PAMAM) dendrimer layers. The average size of the liposomes in solution was 120 nm as determined by dynamic light scattering, with their spherical shape being inferred from scanning electron microscopy (SEM) in cast films. LbL films containing up to 20 PAMAM/DPPG bilayers were assembled onto glass and/or silicon wafer substrates. The growth of the multilayers was achieved by alternately immersing the substrates into the PAMAM and DPPG solutions for 5 and 10 min, respectively. The formation of PAMAM/DPPG liposome multilayers and its ability to interact with BSA were confirmed by Fourier transform infrared spectroscopy (FTIR). The structural features and film thickness were obtained using X-ray diffraction and surface plasmon resonance (SPR).  相似文献   

11.
Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 102 CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.  相似文献   

12.
通过层层自组装方法在氧化铟锡(ITO)电极上原位制备了Dawson型磷钨铁杂多酸/聚酰胺-胺复合膜。用XPS、UV-Vis、CV、AFM分析表征复合膜的形成过程和电化学性能。结果表明: 杂多酸阴离子和聚酰胺-胺层层自组装形成多层复合膜且增长均匀; 复合膜在酸性溶液中出现了三对氧化还原峰; 用该复合膜修饰的电极稳定性好, 对亚硝酸盐和溴酸盐均具有良好的电催化活性。   相似文献   

13.
陈丽芳  林深  施源德  郭春美 《功能材料》2011,42(6):1045-1049
通过层层自组装技术在氧化锢锡(ITO)电极上制备Keggin型硼钨铜杂多酸/聚酰胺-胺有机-无机复合多层膜.利用X射线光电子能谱(XPS),UV-Vis光谱和原子力显微镜(AFM)等手段对多层膜的组成和表面形貌进行了表征.结果表明,杂多酸阴离子和聚酰胺-胺树形分子通过静电相互作用形成了多层膜且膜的增长均匀.杂多酸阴离子...  相似文献   

14.
Context: Polyamidoamine (PAMAM) dendrimers have attracted lots of interest as drug carriers. And little study about whether pluronic-attached PAMAM dendrimers could be potential drug delivery systems has been carried on.

Objective: Pluronic F127 (PF127) attached PAMAM dendrimers were designed as novel drug carriers.

Methods: Two conjugation ratios of PF127-attached PAMAM dendrimers were synthesized. 1H nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectrum (FTIR), element analysis and ninhydrin assay were used to characterize the conjugates. Size, zeta potential and critical micelle concentrations (CMC) were also detected. And DOX was incorporated into the hydrophobic interior of the conjugates. Studies on their drug loading and drug release were carried on. Furthermore, hemolysis and cytotoxicity assay were used to evaluate the toxicity of the conjugates.

Results and discussion: PF127 was successfully conjugated to the fifth generation PAMAM dendrimer at two molar ratios of 19% and 57% (PF127 to surface amine per PAMAM dendrimer molecular). The conjugates showed an increased size and a reduced zeta potential. And higher CMC values were obtained than pure PF127. Compared with unconjugated PAMAM dendrimer, PF127 conjugation significantly reduced the hemolytic toxicity and cytotoxicity of PAMAM dendrimer in vitro. The encapsulation results showed that the ability to encapsulate DOX by the conjugate of 19% conjugation ratio was better than that of 57% conjugation ratio. And the maximum is ~12.87 DOX molecules per conjugate molecule. Moreover, the complexes showed a sustained release behavior compared to pure DOX.

Conclusion: Findings from the in vitro study show that the PF127-attached PAMAM dendrimers may be potential carriers for drug delivery.  相似文献   


15.
Functional drug delivery systems are important for improved pharmacotherapy. The aim of this work was to describe how the introduction of varying amounts of the dendrimer polyamidoamine (PAMAM) into a chemically cross-linked thermoresponsive poly(N-isopropylacrylamide) (PNIPAAM) gel affects the structure, swelling properties, and drug release characteristics. The structure of the gel system was characterized by small-angle X-ray scattering (SAXS), while the drug delivery system was characterized by measuring the swelling, loading, and release of the model drug. The SAXS results suggest that the PNIPAAM gel is heterogeneous on a local length scale, whereas more homogeneous gels are formed in the presence of PAMAM. Increased swelling and loading capacity were observed for higher fractions of PAMAM dendrimer. This was explained by the enhanced hydrophilicity obtained by inclusion of the dendrimers. The swelling process was observed to be very slow taking place over several days, indicating other mechanisms than diffusion to be the rate-limiting step. The temperature-induced deswelling was more pronounced for the dendrimer-containing formulations. This process was observed to be very fast and complete within a couple of hours. Similarly the release rate was quite fast without being affected by inclusion of the dendrimer. Retention of a significant portion of the loaded drug at specific conditions was shown to be due to the hydrogen bonding ability of PNIPAAM. Improved conditions for drug delivery were achieved in several respects by incorporation of PAMAM dendrimer molecules in the PNIPAAM hydrogel. Our results indicate that the PAMAM entities expand the PNIPAAM gel and that the gel becomes more homogeneous.  相似文献   

16.
The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase‐like activity can decompose hydrogen peroxide (H2O2) to produce highly toxic hydroxyl radicals (?OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating‐mediated enzyme‐like activities. Herein, it is reported for the first time that amine‐terminated PAMAM dendrimer‐entrapped gold nanoclusters (AuNCs‐NH2) unexpectedly lose their peroxidase‐like activity while still retaining their catalase‐like activity in physiological conditions. Surprisingly, the methylated form of AuNCs‐NH2 (i.e., MAuNCs‐N+R3, where R = H or CH3) results in a dramatic recovery of the intrinsic peroxidase‐like activity while blocking most primary and tertiary amines (1°‐ and 3°‐amines) of dendrimers to form quaternary ammonium ions (4°‐amines). However, the hidden peroxidase‐like activity is also found in hydroxyl‐terminated dendrimer‐encapsulated AuNCs (AuNCs‐OH, inside backbone with 3°‐amines), indicating that 3°‐amines are dominant in mediating the peroxidase‐like activity. The possible mechanism is further confirmed that the enrichment of polymeric 3°‐amines on the surface of dendrimer‐encapsulated AuNCs provides sufficient suppression of the critical mediator ?OH for the peroxidase‐like activity. Finally, it is demonstrated that AuNCs‐NH2 with diminished cytotoxicity have great potential for use in primary neuronal protection against oxidative damage.  相似文献   

17.
This work elucidated the antibacterial efficacy, corrosion resistance, and cytotoxicity of electroplated copper-substituted hydroxyapatite (CuHAP) coating on titanium (Ti). The fabricated CuHAP coatings were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. The CuHAP coating had needle-like apatite crystals, the doping of Cu2+ into HAP reduced porosity, and the coating became denser. The CuHAP crystals were carbonated with a few of Cu2+ incorporation (about 0.80 wt%). The Cu2+ ions were homogenously deposited into HAP films. Potentiodynamic polarisation test revealed that the CuHAP coating provided good barrier characteristics and achieved superior corrosion protection for Ti substrates. The in vitro antibacterial activity of as-prepared CuHAP coating was evaluated against Escherichia coli and was found to be effectively high against bacterial colonization. Bioactivity test conducted by soaking the coatings in simulated body fluid demonstrated that CuHAP coating can quickly induce bone-like apatite nucleation and growth. In vitro biocompatibility tests, MTT, were employed to assess the cytotoxicity of CuHAP coating with osteoblast-like MC3T3-E1 cells. The obtained HAP coating doped with a low content of Cu2+ exhibited good cytocompatibility and had no toxicity toward MC3T3-E1.  相似文献   

18.
Here we describe the detection of live Pseudomonas aeruginosa using a sensing film containing a fourth-generation hydroxy-terminated polyamidoamine (PAMAM) dendrimer (i.e., G4-OH) and SYTOX Green fluorescent nucleic acid stain. The films are configured on simple, disposable plastic coupons or optical fibers and are interrogated using a miniature fiber-optic spectrometer. SYTOX Green is generally considered a dead cell stain because it is not able to cross the membranes of live cells. In the presence of PAMAM-OH (G4-OH) in water, the bacterial cell becomes permeable to the SYTOX dye and the fluorescence is significantly enhanced. The fluorescence increases with the bacteria concentration, and the intensity at 5.4 x 10(7) cells mL(-1) is 350% higher than the liquid controls without PAMAM-OH. We also demonstrate that dendrimers stabilize the sensing film. After drying and desiccation, the SYTOX Green/PAMAM-OH films are still able to quantitatively detect P. aeruginosa in water. Incorporation of glucose into the SYTOX Green/ PAMAM-OH film may improve the homogeneity of the film and enhances the fluorescence signal an additional 11-25%.  相似文献   

19.
The physical and chemical properties of PPI dendrimers' interior were investigated using the fluorescent, solvatochromic probe phenol blue. In aqueous solutions of each generation studied, two discrete dye populations were clearly observed. PPI dendrimers were shown to form a tight, nonpolar association with the vast majority of available dye, within the dendrimer interior, near the core. In the steady-state fluorescence emission spectra, a microenvironment of decreasing polarity in increasingly larger-generation PPI dendrimers (up to G3) was seen for the associated probe. Each of the remaining larger-generation dendrimers provided a microenvironment of essentially equal polarity. Fluorescence anisotropy values for phenol blue in the PPI dendrimers demonstrated the dye's sensitivity to the changing molecular volumes of the dendrimer generations. Model compounds that mimicked PPI's surface groups and branching moieties were used to better define the associated dye's location. The mimics further confirmed that phenol blue was associated inside the dendrimer, where it did not interact with the dendrimer surface groups. The comparison of amine-terminated PPI and PAMAM dendrimers clearly demonstrated the effects of their structural differences and the ability of phenol blue to have sensed those differences, including the initiator core length, branching unit length, and branching unit chemical composition.  相似文献   

20.
The structural state of dendritic macromolecules at air–water (Langmuir monolayers) and air–solid (adsorbed monolayers, self-assembled films, and cast films) interfaces is discussed. Examples of undistorted and compressed dendritic macromolecules within monolayers and multilayer films are presented. The high interaction strength between “sticky” surface groups of dendrimers and substrates is considered to be responsible for the formation of the compact monolayer structures and dendrimer compression. The interfacial behavior of dendrimers is compared to the surface states predicted by molecular dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号