首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fenton's reagent was employed in the decolorization of aqueous solutions of one of three dyestuffs (Acid Red 27, Reactive Blue 81, Acid Blue 62). The decolorization with Fenton's reagent was found to be simple and fast. In order to determine the reaction kinetics of the decolorization the stopped-flow technique under pseudo-first order conditions was used. Experiments were carried out at pH=2, at the excess of ferrous salts (FeCl2·4H2O or FeSO4·7H2O). The rate constants of the decolorization determined by us are in the same order of magnitude: 90 to 100 dm3/(mol-s) for FeSO4·7H2O/H2O2, and 40 to 50 dm3/(mol-s) for FeCl2·4H2O/H2O2 systems. The difference between the rate constants for both ferrous salts indicates that the Fenton's reaction may proceed via different mechanisms.  相似文献   

2.
Graft copolymerization of acrylonitrile (AN) onto sodium alginate was studied in an aqueous medium using ferrous ammonium sulfate–hydrogen peroxide (Fenton's reagent) as the redox initiator. To optimize the reaction conditions for affording maximum percentage of grafting, the concentrations of sulfuric acid, initiator components, monomer, and also temperature and time were varied. The results are discussed and a reaction mechanism is proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
When ferric ions are substituted for ferrous ions in Fenton’s reagent, the reactions which occur are called Fenton‐like reactions. This study describes the relative efficiency of Fenton (with ferrous ions) and Fenton‐like (with ferric ions) reactions for the degradation of a basic dyestuff, CI Basic Yellow 51, in aqueous solution. Comparisons were made on the basis of the observed reductions in chemical oxygen demand and visible absorption of the dye solutions at optimum reaction conditions. It was found that the Fenton process with 2.63 mm ferrous ion and 39.96 mm hydrogen peroxide at the optimum pH (3.0) eliminated 92.2% of chemical oxygen demand and 98.9% of colour in 22 min, whereas 43.2% of chemical oxygen demand and 64.6% of colour was eliminated by the Fenton‐like process within the same time period, but at pH 4. The efficiency of the latter was significantly improved (to 96.6% removal of colour and 99.7% removal of chemical oxygen demand) by an increase in temperature of 35 °C (from 15 to 50 °C), while no improvements were observed in the efficiency of the Fenton process by temperature elevations.  相似文献   

4.
Three types of wastewater, from commercial dyeings containing reactive, disperse and direct dyes were treated using an organic coagulant at pH 5.5 as a first step, with stirring for 5 min. The second step was oxidation by Fenton's reagent (hydrogen peroxide and iron(II) sulfate) at pH 2.5–3 for 30 min. The pH of the solution was then raised to 7.5–8 where coagulation by iron hydroxide took place over 20 min. Finally, sand filtration was performed. The percentage of color removal from treated wastewater was more than 99.00% and the percentage decrease in COD was more than 96.00%. © 2002 Society of Chemical Industry  相似文献   

5.
The oxidation of some chlorophenols: 4‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, 2,3,4,6‐tetrachlorophenol, tetrachlorocatechol (3,4,5,6‐tetrachloro‐2‐hydroxy phenol) and 4‐chloroguaiacol (4‐chloro‐2‐methoxy phenol) has been studied via single photodecomposition produced by polychromatic UV irradiation, oxidation by hydroxyl radicals generated by Fenton's reagent (hydrogen peroxide plus ferrous ions), and degradation by hydroxyl radicals produced by combinations of UV irradiation plus hydrogen peroxide, and UV irradiation plus hydrogen peroxide and ferrous ions (photo‐Fenton system). These organics have been selected as models of chloro‐phenolic derivative pollutants present in wastewaters and groundwaters. The degradation levels obtained in each process are reported. The quantum yields in the single photodecomposition reaction and the rate constants between the chlorophenols and the hydroxyl radicals in the reaction with Fenton's reagent are determined. Finally, the additional contributions to the photodecomposition promoted by the radical reaction in the combined UV/H2O2 and photo‐Fenton systems are also evaluated. © 2001 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Pollution caused by industrial wastewater has become a common problem for many countries. In particular, dye pollutions from industrial effluents disturb human health and ecological equilibrium. The discharge of highly colored synthetic dye effluents is aesthetically displeasing and can damage the receiving water body by impeding penetration of light. Azo dyes can be reduced to more hazardous intermediates on anaerobic conditions. Therefore, an effective and economic treatment of effluents containing a diversity of textile dyes has become a necessity for clean production technology for textile industries. Herein we wish to report the degradation of Acid Red 88 by the combination of Fenton's reagent and ultrasound irradiation. RESULTS: The results show that the combination of ultrasonic irradiation and Fenton's reagent is effective for the degradation of Acid Red 88 aqueous solution. Furthermore, it can achieve better results than either Fenton's reagent or ultrasound alone. The optimum conditions for the degradation of Acid Red 88 aqueous solution were 1.96 mmol L?1 H2O2, 0.108 mmol L?1 Fe2+, pH 3.0, and ultrasonic irradiation frequency of 40 kHz. A degradation efficiency of 98.6% was achieved within 135 min. CONCLUSION: We have provided an efficient and convenient procedure for the degradation of Acid Red 88 aqueous solution. In the present procedure, the azo linkage of Acid Red 88 is broken and some carbonyl compounds are formed, but the complete mineralization of dye cannot be achieved. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Aqueous solutions of four azo‐dyes, Acid Red 14 (AR14), Congo Red (CR), Reactive Black 5 (RB5), and Reactive Violet 5 (RV5) were treated with ozone, and the impact of ozonation on their subsequent treatability by aerobic biodegradation processes was investigated. RESULTS: In all cases, ozonation at the highest ozone doses investigated could remove more than 96% of the original dye, and the corresponding residual colour of the azo dye solutions declined to less than 20 on the Pt‐Co scale. Ozonation also resulted in reduction of chemical oxygen demand (COD), total organic carbon (TOC) the COD/TOC ratio and pH, while in all cases electrical conductivity of the dye solutions increased. Activity of the microbial colonies present in domestic wastewater was not inhibited when un‐ozonized solutions of these dyes were mixed in a 1:1 volumetric ratio with domestic wastewater, although the dyes themselves were not degraded. Also, no significant inhibition of microbial activity was observed in 1:1 mixtures of ozonized dye solutions and domestic wastewater, especially when the initial dye concentration was low and the applied ozone dose was high. In almost all cases, progressively enhanced BOD exertion was observed in mixtures containing dye solutions ozonized with progressively higher doses. This indicated that some ozonation by‐products of the above dyes could be degraded by microorganisms present in domestic wastewater. CONCLUSIONS: It was concluded that the above dye solutions, after ozonation for partial or complete colour removal, could be mixed with domestic wastewater for subsequent treatment by aerobic biological processes, with no adverse impact on the activity of the microbial colonies present in domestic wastewater. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
Diazinon is a widely used organophosphorus insecticide that is an important pollutant in aquatic environments. The chemical removal of diazinon has been studied using UV radiation, ozone, Fenton's reagent, UV radiation plus hydrogen peroxide, ozone plus hydrogen peroxide and photo‐Fenton as oxidation processes. In the photodegradation process the observed quantum yields had values ranging between 2.42 × 10?2 and 6.36 × 10?2 mol E?1. Similarly, the ozonation reaction gave values for the rate constant ranging between 0.100 and 0.193 min?1. In the combined systems UV/H2O2 and O3/H2O2 the partial contributions to the global oxidation reaction of the direct and radical pathways were deduced. In the Fenton's reagent and photo‐Fenton systems, the mechanism of reaction has been partially discussed, and the predominant role of the radical pathway pointed out. Additionally, the rate constant for the reaction between diazinon and the hydroxyl radicals was determined, with the value 8.4 × 109 L mol?1 s?1 obtained. A comparison of the different oxidation systems tested under the same operating conditions revealed that UV radiation alone had a moderate oxidation efficiency, which is enhanced in the case of ozone, while the most efficient oxidant is the photo‐Fenton system. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide–acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe2+/H2O2 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 μg/g to 9.50 μg/g.  相似文献   

10.
BACKGROUND: High concentrations of phenol in wastewater are difficult to remove by purely biological methods. Chemical oxidation is one way to treat high concentrations of phenol but complete oxidation will make the treatment process uneconomical. For the purpose of integrating chemical and biological treatment, the oxidation of phenol using chlorine dioxide was investigated in a medium suitable for bioremediation. The effects of chlorine dioxide concentration (500 to 2000 mg L?1), temperature (10 to 40 °C) and pH (3 to 7) on the oxidation of 2000 mg L?1 of phenol were determined. RESULTS: Chlorine dioxide concentration was found to be the dominant parameter for the removal of phenol in the nutrient rich medium. The optimal concentration of chlorine dioxide to completely oxidize 2000 mg L?1 of phenol was 2000 mg L?1. Compared with Fenton's reagent, half as much chlorine dioxide was needed to oxidize 2000 mg L?1 phenol. The reaction of chlorine dioxide with phenol was very fast and reached equilibrium within 10 min. The main oxidation products were identified as 1,4‐benzoquinone and 2‐chloro‐1,4‐benzoquinone. CONCLUSION: Compared with Fenton's reagent, chlorine dioxide is a superior oxidant for removal of phenol from both pure water and bioremediation medium. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
The ozonation of esculetin (6,7-dihydroxycoumarin), a major pollutant present in the wastewater generated in the cork industry, was accelerated at high pH, with apparent second-order rate constants in the range from 3.3 × 104 L/(mol·s) at pH=2 to 8.4 × 107 L/(mol·s) at pH=9. The acid-base equilibrium of esculetin was studied, resulting in a pKa value of 7.37. Taking into account this pKa, the rate constants for the reaction between ozone and the un dissociated and dissociated forms of esculetin were 3.0 × 104 and L/(mol·s) 6.67 × 108 L/(mol·s), respectively. Apparent first-order rate constants for the photolysis by UV irradiation were also evaluated, with values between 0.12 × 10?2 min?1 at pH=2 and 1.15 × 10?2 min?1 at pH=9, while the quantum yields for this photo-degradation reaction varied from 0.99 × 10?2 mol/Eins to 11.1 × 10?2 mol/Eins at these pHs. The Fenton's reagent system was used for the generation of hydroxyl radicals, and the rate constant for the reaction between esculetin and these radicals was determined to be 1.06 × 1010 L/(mol·s). Finally, several chemical oxidation systems were used in the degradation of this pollutant: single oxidants (ozone, UV irradiation) and advanced oxidation processes (Fenton's reagent, UV/H2O2, O3/H2O2, O3/UV, O3/H2O2 /UV, and photo-Fenton system). The results revealed that the most efficient methods in terms of esculetin removal were ozonation among the single oxidants, and the photo-Fenton system among the combined processes.  相似文献   

12.
The aim of this study was to investigate the effectiveness of chemical oxidation by applying ozonation, combination of ozone and hydrogen peroxide and Fenton's processes for decolorization and residual chemical oxygen demand (COD) removal of biologically pretreated pulp and paper industry effluents. The batch tests were performed to determine the optimum operating conditions including pH, O3, H2O2, and Fe2+ dosages. H2O2 addition reduced the reaction times for the same ozone dosages; however combinations of ozone/hydrogen peroxide were only faintly more effective than ozone alone for COD and color removals. In the Fenton‘s oxidation studies, the removal efficiencies of COD, color and ultraviolet absorbance at 254 nm (UV254) for biologically treated pulp and paper industry effluents were found to be about 83, 95, and 89%, respectively. Experimental studies indicated that Fenton oxidation was a more effective process for the reduction of COD, color, and UV254when compared to ozonation and ozone/hydrogen peroxide combination. Fenton oxidation was found to have less operating cost for color removal from wastewater per cubic meter than the cost for ozone and ozone/hydrogen peroxide applications.  相似文献   

13.
为进一步提高原油采收率,国内多数油田开展了三次采油技术的研究和应用。三元复合驱采油废水中残留了大量的聚丙烯酰胺、表面活性剂和碱,油田污水处理常采用混凝处理,由于采出水中含有一定浓度的聚合物,导致采出水的粘度增加,油、水、泥的分离难度增大,常规混凝效果不好,为此需要采取措施强化混凝。本实验采用静态烧杯试验得出,在最佳实验条件:聚合硫酸铁投量为2 500 mg/L、温度为45℃、pH值为6、快速搅拌(200 r/min)2 min后慢速搅拌(80 r/min)5 min、沉淀时间30 min后,水样含油量去除率达64%左右。通过混凝前投加氧化剂强化混凝实验得出:高锰酸钾投量在0.5 mg/L时,除油率提高8%。双氧水投量在5 mmol/L时,除油率提高17%。芬顿试剂中双氧水投量为5 mmol/L,二价铁离子投量在1.5 mmol/L时,除油率提高25%,效果最好。  相似文献   

14.
采用Fenton试剂氧化处理兰炭废水,通过考察各影响因素对COD及色度的去除率,确定最佳工艺条件。结果为:温度为60℃,pH值为6,H_2O_2投加量为0.3 mol,n(Fe~(2+)):n(H_2O_2)=20,反应时间为120 min,对COD和色度的去除率最大,分别为96.84%和98.00%,B/C值由0.21上升到0.60,可生化性得到很大提高。  相似文献   

15.
The electro‐Fenton (EF) process is a promising method combining electrochemical reactions and Fenton's reagent. In this hybrid process, the electrical current induces the in situ generation of H2O2 via reduction of oxygen, and the catalytic reaction is propagated by Fe2+ regeneration, which can take place by reduction of Fe3+ with H2O2, hydroperoxyl radical, organic radical intermediates, or directly at the cathode. Recent advances in the EF process are discussed and several key variables analyzed, including electrode material, initial pH, and Fenton's reagents, in order to extend the applicability of this technology.  相似文献   

16.
Currently, organic polymers are adopted in alum sludge (aluminum-coagulated drinking water treatment sludge) conditioning. However, there are important concerns regarding the use of these polymers because of the unknown and long-term effects of the potential release of excess polymer to the surrounding environment when the sludge is landfilled. Therefore, as an initial action, this study aimed at investigating alternative chemical conditioning methods and focused mainly on exploiting Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) reagents as the conditioner. Experiments have been conducted to test the effectiveness of Fenton's reagent (containing the ferrous salts of chloride, sulfate, or oxalate), Fenton-like reagent (containing ferric salts of chloride and sulfate), and the coagulation method using FeCl3 for alum sludge conditioning at constant hydrogen peroxide and iron salt concentrations of 125 and 20 mg/g DS (dry solids), respectively. The effectiveness on dewaterability of the alum sludge demonstrated that the maximum reduction (%) of SRF (specific resistance to filtration) and CST (capillary suction time) of 74% and 47%, respectively, can be obtained when Fenton's reagent was adopted for sludge conditioning. Such reduction of 64% for SRF and 38% for CST can be achieved when Fenton-like reagents were applied.  相似文献   

17.
A study comparing the efficiency in decolorizing biologically pre-treated molasses wastewater of different oxidation processes using ozone, single hydrogen peroxide, Fenton's reagent and ozone combined with hydrogen peroxide has been performed. Ozone treatment was able to reduce about 76% of color. A combination of ozone with a low concentration of hydrogen peroxide was able to increase the color removal efficiency up to 89%. Gel permeation chromatography corroborated the reduction in the concentration of chromophore groups responsible for wastewater color. Single hydrogen peroxide and Fenton's reagent were not able to reduce color. Bicarbonate ions were found to be strong inhibitors of decolorizing reactions.  相似文献   

18.
The feasibility of using ultrasonication in combination with the Fenton's reaction was investigated for treating cyan ink effluent. A two‐step treatment process was developed—the first step was an ultrasound‐assisted electro‐oxidation, while the second was chemical oxidation through the addition of hydrogen peroxide. The use of electro‐oxidation in the first step significantly reduced the amount of iron needed compared with the conventional Fenton's reaction, resulting in a 98% reduction in the amount of sludge produced. A simple technique based on refractive index measurements was introduced as a rapid way to quantify the amount of sludge produced. It was postulated that ultrasonication in the presence of iron (from electrolysis) in the first step converted the ink components into reaction intermediates which were more amenable to peroxide oxidation in the second step. These intermediates were quantified by ultra‐violet absorption at wavelengths of 275–400 nm. The two‐step treatment process was able to reduce the COD and copper contents in the ink waste water to within the discharge limit, which conventional Fenton's reaction was unable to meet for copper discharge. The same COD removal was also achieved in about half the time. Kinetics study performed to further understand the reaction mechanisms show second‐order kinetics for both steps with activation energies of 18.2 and 20.4 kJ/mol for steps 1 and 2, respectively.  相似文献   

19.
BACKGROUND: A core‐shell type carboxylic acid modified resin was prepared and dye sorption characteristics of the resin were investigated. The resulting grafted resin material has been shown to be an efficient sorbent for removal of basic dyes from water as a result of the carboxylic acid group's affinity towards basic dye molecules. RESULTS: The resin was characterized using Fourier transform infrared spectroscopy (FT‐IR) and titrimetric methods. The basic dyes (methylene blue and crystal violet) were removed by contacting the swollen resin with aqueous dye solutions at room temperature. The adsorption capacities of resin were determined by colorimetric analysis of the residual dye content in the adsorption medium, which gave capacities for methylene blue and crystal violet of 300 and 250 mg g?1 resin, respectively. The prepared resin is also able to remove basic dyes completely from dilute aqueous dye solutions. Batch kinetic sorption experiments determined that a pseudo‐second‐order rate kinetic model was applicable. CONCLUSION: Flexibility of the polymer side chains is expected to provide pseudo‐homogeneous reaction conditions and easy accessibility of the functional groups involved. The adsorbents are expected to have the advantage of mobility of the grafted chains in the removal of basic dyes from aqueous mixtures. The resin has potential as an adsorbent for removal of basic dyes for use over a wide pH range. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
Inexpensive and efficient cellulose-based adsorbents were prepared by the reaction of cross-linked polyethylenimine (CPEI) with an agricultural waste (i.e., wood sawdust). Factors affecting the extent of amination, such a CPEI concentration, pH, time, and temperature of reaction as well as sawdust particle size range, were studied. The obtained adsorbents were found to be highly effective for removal of anionic dyestuffs (i.e., direct, reactive, and acid dyes) from aqueous solutions. The presence of CPEI on and/or within the purified sawdust provides cationic active sites (i.e., amino groups) and enhances the substantivity of wood cellulose for anionic dyes, thereby improving the percent color removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号