首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Numerical investigation was conducted on the effects of gravity, surface tension, and wall adhesion upon condensation on a short vertical plate. The volume of fluid method was applied to model the interaction between the liquid and vapor phases and to capture the interface. The surface tension was implemented by employing the method of continuum surface force model. A modified phase-change model, derived from basic equations related to the kinetic gas theory, was proposed and verified based on the cases of Nusselt film condensation of water vapor on a vertical flat plate, the forced convection film condensation on a horizontal flat plate, and the capillary blocking due to condensation in a horizontal miniature circular tube. The predicted results showed that a laminar capillary wavy flow regime exists and the waves enhance the heat transfer of condensation on the plate. The mean film thickness increases and the heat transfer performance becomes worse with decrease of gravity. A high value of surface tension or contact angle, representing a large surface free energy difference, leads to an enhancement of heat transfer on the plate with large-amplitude waves.  相似文献   

2.
A programme of condensation experiments was carried out at atmospheric pressure using a water-cooled flat plate varying the air concentrations, the plate inclination and its orientation (upward or downward facing). Rates of heat transfer have been measured on a single face of the condensing plate suspended in a cylindrical test section as steam and mixtures of steam and air flowed over it. The rate of heat transfer decreased as the angle of the plate to the horizontal was reduced and as the concentration of air was increased. A notable observation was that comparison of results for the upward and downward facing cases showed that the heat transfer rates with pure steam are higher for an upward facing plate than for a downward facing one. However, with air present in the steam, this trend is reversed. The effects of plate orientation, mixture flows and buoyancy are discussed.  相似文献   

3.
In the present numerical study, a two-dimensional, laminar, free convection saturated film boiling of water at near critical conditions over a discrete heater surface flush mounted over a flat plate has been investigated. For the numerical simulations, a multi-directional advection algorithm based Coupled Level Set and Volume of Fluid (CLSVOF) interface capturing method is used. In this study, both the flow and heat transfer characteristics are evaluated for various heater sizes, wall superheats, and the angle of orientations of the flat plate. The numerical modeling of the three phase moving contact lines is evaluated with the experimental data of a single droplet impact and spreading over a horizontal flat solid surface. From the numerical study, it is observed that the heat transfer rate from a small size discrete heater surface is higher compared to that of a large size heater surface. It is also observed that the variation of the plate orientation angle, α of the heater surface from upward facing horizontal position (α?=?0°) to vertical position (α?=?90°) shows increase in the magnitude of upward rising vapor velocity due to increase in the buoyancy force. It leads to higher rate of heat transfer at vertical position compared to that of horizontal position.  相似文献   

4.
Natural convective flows over upward‐facing, inclined plates were investigated experimentally, with an emphasis on the role of opposing flows that appear over the plates inclined slightly from the horizontal line. The flow fields over the plates and the surface temperatures of the heated plates were visualized with both dye and a liquid‐crystal thermometry. The results showed that both the descending and ascending flows appeared over the plates when the inclination angles of the plates were less than 15°. The two flows collided with each other at a certain distance from the plate edge, and then detached from the plate to become a thermal plume. It was found that the above distance was determined solely by the inclination angles and was independent of sizes and heat fluxes of the plates. The local heat transfer coefficients of the plates were also measured. The results showed that the heat transfer from the plate was enhanced by the occurrence of the descending flows. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(5): 362–375, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10036  相似文献   

5.
The convection‐condensation heat transfer of vapor‐gas mixtures in a vertical tube was studied theoretically and experimentally. The effects of the condensation of a small amount of water vapor (8 to 20%) on heat transfer in a vertical tube were discussed. Comparisons show that theoretical solutions obtained through modified film model and experimental results are in good agreement. The results show that the condensation heat transfer of a small amount of water vapor and single‐phase convection heat transfer in the vapor‐gas mixtures are of the same order of magnitude, and these two modes of heat transfer could not be neglected. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(7): 531–539, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10055  相似文献   

6.
B. J. Chung  S. Kim 《传热工程》2013,34(11):936-941
Condensation experiments were carried out at atmospheric pressure using water-cooled horizontal and slightly inclined flat plates, varying the air concentrations and the orientations (upward or downward facing). The plate was suspended in a cylindrical test section and exposed to a very slow flow of pure steam or mixtures of steam and air from underneath. For the slightly inclined cases, the test results showed good agreement with the existing studies and reproduced the typical inclined plate phenomena. For the horizontal cases, the downward facing plate showed twice as high heat transfer rates as the upward facing one. The air contained in the steam showed negligible effects for the upward facing plate but a systematic decrease in heat transfer for the downward facing one. The condensation heat transfer beneath the downward facing horizontal plate is influenced by the surface wetting characteristics.  相似文献   

7.
The two‐dimensional, steady, pool film boiling heat transfer from a horizontal circular plate facing downward to a stagnant saturated liquid is studied theoretically. It is assumed that the vapor‐liquid interface is smooth and that radiation can be disregarded. The relevant governing equations for the vapor film are solved for saturated water at atmospheric pressure using an improved two‐equation boundary‐layer integral method. It is shown that the dimensionless temperature profile is affected by the wall superheat ΔTsat and that the ratio of Nu to X0.2 is an increasing function of ΔTsat. Here, Nu represents the mean Nusselt number and X the film‐boiling Rayleigh number. In addition, it is revealed that the one‐equation boundary‐layer integral method developed by Nishio and colleagues is fairly accurate in predicting the film thickness, the representative radial velocity, and the mean Nusselt number. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(1): 72–84, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10071  相似文献   

8.
Natural convective flows around an upward‐facing horizontal heated plate with a vertical plate at the edge were investigated experimentally. Of particular concern were the influences of the vertical plate on the fluid flow and the heat transfer of the horizontal plate. The flow and temperature fields adjacent to the horizontal plate were visualized with dye and a liquid‐crystal thermometry. The results show that the vertical plate obstructs the flow from the top of the vertical plate, while the flow from the open edge of the horizontal plate covers the whole horizontal surface when the height of the vertical plate exceed H/W = 0.14 for adiabatic vertical plate and H/W = 0.1 for the heated vertical plate. The local heat‐transfer‐coefficients of the horizontal plate were also measured. It was found that the vertical adiabatic plates deteriorate the heat transfer, while the heated vertical plates enhance the heat transfer from the horizontal plates. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(8): 527–539, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20033  相似文献   

9.
An enhancement technique was developed for natural convection heat transfer from a tall, vertical heated plate to water. Rectangular grid fins attached to the base plate were utilized as a heat transfer promoter. These grid fins redirect the high‐temperature fluid ascending along the base plate toward the outside of the boundary layer and introduce the low‐temperature ambient fluid toward the base plate instead. The heat transfer coefficients of thus‐treated surfaces were measured and compared with a nontreated surface and a surface with conventional vertical plate‐fins. The highest performance was achieved for the experimental surfaces. In particular, the experimental surfaces with 5‐mm‐high, nonconducting grids and with 10‐mm‐high, conducting grid fins show 27% and 80% higher heat transfer coefficients compared to the turbulent heat transfer coefficients of the nontreated surface, respectively. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(2): 178–190, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10083  相似文献   

10.
Experiments are carried out on natural convection heat transfer from square pin fin heat sinks subject to the influence of orientation. A flat plate and seven square pin fin heat sinks with various arrangements are tested under a controlled environment. Test results indicate that the downward facing orientation yields the lowest heat transfer coefficient. However, the heat transfer coefficients for upward and sideward facing orientations are of comparable magnitude. Depending on the fin structure, the performance of these two orientations shows a competitive nature. It is found that the sideward arrangement outperforms the upward one for small finning factors below 2.7, beyond which the situation is reversed. In addition, with the gradual increase in the finning factor, the performance of sideward arrangement approaches that of downward arrangement. Aside from the finning factor, the heat sink porosity has a secondary effect on the pin fin performance. The comparison among three orientations shifts in favour of upward and sideward arrangements with raising the heat sink porosity in consequence of reducing the flow resistance. The optimal heat sink porosity is around 83% for the upward arrangement and is around 91% for the sideward arrangement. In particular, the addition of surface is comparatively more effective for the downward arrangement whereas it is less effective for the sideward arrangement. This argument is supported by showing that the augmentation factor, defined as the heat transfer of a heat sink relative to that of a flat plate, is around 1.1–2.5 for the upward arrangement, around 0.8–1.8 for the sideward arrangement, and around 1.2–3.2 for the downward arrangement.  相似文献   

11.
An enhancement technique is developed for natural convection heat transfer from a vertical heated plate with inclined fins, attached on the vertical heated plate to isolate a hot air flow from a cold air flow. Experiments are performed in air for inclination angles of the inclined fins in the range of 30° to 90° as measured from a horizontal plane, with a height of 25 to 50 mm, and a fin pitch of 20 to 60 mm. The convective heat transfer rate for the vertical heated plate with inclined fins at an inclination angle of 60° is found to be 19% higher than that for a vertical heated plate with vertical fins. A dimensionless equation on the natural convection heat transfer of a vertical heated plate with inclined fins is presented. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(6): 334–344, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20168  相似文献   

12.
This article studies the effect of thermal radiation on a MHD free convection flow of a nanofluid bounded by a semi‐infinite vertical plate with a constant heat source in a rotating frame of reference. The plate is assumed to oscillate in time with constant frequency so that the solutions of the boundary layer are the same oscillatory type. The dimensionless governing equations for this investigation are solved analytically using the regular perturbation method. The effect of various important parameters entering into the problem on velocity and temperature fields within the boundary layer are discussed for three different water‐based nanofluids such as Cu, Al2O3, and TiO2 with the help of graphs. The predicted results clearly indicate that the presence of nanoparticles in the base fluid enhances the heat transfer process significantly. The present work shows the need for immediate attention in next‐generation solar film collectors, heat‐exchanger technology, material processing exploiting vertical surface, geothermal energy storage, and all those processes which are greatly exaggerated by heat‐enhancement concepts. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21101  相似文献   

13.
An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convection heat transfer on a downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.  相似文献   

14.
This study presents numerical computation results on laminar convection heat transfer in a plate‐fin heat exchanger, with triangular fins between the plates of a plate‐fin heat exchanger. The rectangular winglet type vortex generator is mounted on these triangular fins. The performance of the vortex generator is evaluated for varying angles of attack of the winglet i.e., 20, 26, and 37° and Reynolds number 100, 150, and 200. The computations are also performed by varying the geometrical size and location of the winglet. The complete Navier–Stokes equation and the energy equation are solved by the (Marker and Cell) MAC algorithm using the staggered grid arrangement. The constant wall temperature thermal boundary conditions are considered. Air is taken as the working fluid. The heat transfer enhancement is seen by introducing the vortex generator. Numerical results show that the average Nusselt number increases with an increase in the angle of attack and Reynolds number. For the same area of the LVG, the increase in length of the LVG brings more heat transfer enhancement than increasing the height. The increase in heat transfer comes with a moderate pressure drop penalty. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20318  相似文献   

15.
The present paper describes experimental results on the fluid flow and heat transfer of natural convection between a horizontal, heated plate facing upward and an insulated cover plate. The experiments were carried out with water. The width of the test plates W and their gaps H were changed from W = 50 to 250 mm and H = 10 to 30 mm and ∞ (no cover plate). The visualization studies with dye and liquid crystal thermometry revealed that the roll cells whose axes are perpendicular to the flow direction appear and become dominant over the heated plate on decreasing the gap. These roll cells inhibit the heat transfer, and thus, the heat transfer coefficients become smaller than those without a cover plate. It was found that the flow and heat transfer in the region near the plate edges are unaffected by the cover plate. The conditions of the above reduced heat transfer were determined empirically. Moreover, nondimensional correlations for the local and the overall heat transfer coefficients of the heated plates are proposed based on the present heat transfer results. © 2000 Scripta Technica, Heat Trans Asian Res, 29(4): 333–346, 2000  相似文献   

16.
This paper focuses on the application of fuzzy logic (FL) to predict the forced convection heat transfer from V‐shaped plate internal surfaces exposed to an air impingement slot jet. The aim of the present paper is to consider the effects of the angle of a V‐shaped plate (Φ), slot‐to‐plate spacing ratio (Z/W), and Reynolds number (Re) variation on average heat transfer from the V‐shaped plate internal surfaces. The data used for developing the FL structure was obtained experimentally by a Mach‐Zehnder interferometer. The proposed FL was developed using MATLAB functions. It was observed that the average Nusselt number will be decreased with an increase in jet spacing and be increased with an increase in Reynolds number and angle of V‐shaped plate. Moreover, it is also shown that fuzzy logic is a powerful technique to use for predicting heat transfer due to its low error rate. The average error of the fuzzy predictions compared with experimental data was found to be 0.33% for this study. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21009  相似文献   

17.
A boundary layer analysis has been presented for the mixed convection of water at 4°C over a vertical plate embedded in a porous medium. The Robin or convective boundary condition at the surface has been considered where the heat lost from the surface is the product of a heat transfer coefficient and the temperature difference between the surface and the free stream. The governing non‐similar boundary layer equations for both the forced and free convection dominated regimes were solved numerically by means of an implicit finite difference method. The friction factor and dimensionless heat transfer rate (Nusselt number) are presented for several values of the dimensionless heat transfer coefficient and buoyancy parameter. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21022  相似文献   

18.
Most investigations on forced convective boiling have been conducted by using uniformly heated round tubes under a vertical upward flow condition, although the actual system has a non‐uniformly heated condition with several tube orientations. The non‐uniformity of the heat flux and tube inclination causes the liquid film distribution, which in turn affects the critical heat flux. In this investigation, the flow and heat‐transfer characteristics were experimentally investigated under non‐uniformly heated conditions along the circumferential direction with a 45° tube inclination. In the experiment, CHF was measured by using two different heated lengths, i.e., 900 and 1800 mm. The experimental results showed a unique tendency of CHF caused by the interrelationship of the non‐uniform heat flux distribution, the tube inclination, and liquid film redistribution. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20333  相似文献   

19.
The effects of an inner rotating plate on the heat transfer in a differentially heated inclined enclosure were investigated experimentally. The aspect ratio of the enclosure (height/width) was 1 throughout the experiments. An acrylic plate with a small thermal conductivity was installed horizontally at the center of the square enclosure, and was rotated at various speeds by using a motor attached outside of the enclosure. The inclination angle of the enclosure was varied from –90° to 90°. Purified water was used for the working fluid. The flow pattern was sketched by a visualization experiment using aluminum powder. The heat transfer enhancement can be clearly seen for the inclined enclosure with the hot wall downward facing. The rotating plate used here is useful for the regulation of a wide‐ranging heat transfer rate. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 331–340, 2001  相似文献   

20.
An experiment on pool boiling in methanol was performed for a case in which the boiling space was controlled by an interference plate with many holes. The narrow space, 0.12 mm in thickness, between the heat transfer surface and the interference plate was hermetically sealed at the perimeter. Therefore, the vapor and liquid were only exchanged through the holes in the interference plate. The degree of superheat at the onset of boiling was 0.7 K without overshoot at 10‐mm plate thickness, 1‐mm hole diameter, and 3.85‐mm hole pitch. The critical heat flux obtained was the same value without the interference plate mentioned above. The interference plate disturbed free convection and a superheat layer was provided under small heat flux on the heat transfer surface. The critical bubble diameter for the onset of boiling was decreased as the temperature of the superheat layer was increased. Thus, the degree of superheat at the onset of boiling was decreased. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(7): 462–471, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20028  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号