首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ozonation was tested on selected streams of cotton finishing textile plant wastewater for optimizing chemical oxygen demand (COD) removal. For this purpose, significant COD fractions in the wastewater were experimentally identified and the effect of ozone on these fractions was investigated. Ozonation experiments were performed with a 1 dm3 sample volume. Ozone treatment of batches of raw wastewater provided, at a rate of 62 mg min?1 and a gas feeding time of 15 min, achieved complete colour removal but only 21% COD reduction. Increasing the feeding time to 30 min slightly increased the COD removal to 32%. At this feeding time, removal of the readily biodegradable COD was 60%, but soluble inert COD reduction remained at 16%, indicating selective preference of ozone for simpler compounds. At low concentrations, ozone was mainly influential on soluble COD compounds. Longer feeding times also affected particulate compounds, resulting in the solubilization of the COD fractions. Pre‐ozonation of the dye‐house wastewater, as a segregated stream, proved much more effective in the breakdown of refractory organic compounds, rendering the overall plant effluent more amenable to biological treatment. © 2002 Society of Chemical Industry  相似文献   

2.
The continuous treatment of domestic wastewater by an activated sludge process and by an integrated biological–chemical (ozone) oxidation process were studied in this work. Chemical oxygen demand (COD), biochemical oxygen demand (BOD), absorbance at 254 nm (UV254) and nitrogenous compound content were the parameters followed in order to evaluate the performance of the two processes. Experimental data showed that both UV254 and COD reductions are improved in the combined biological–chemical oxidation procedure. Thus, reductions of 59.1% and 37.2% corresponding to COD and UV254, respectively were observed after the biological process (hydraulic retention time = 5 h; mixed liquor volatile suspended solids concentration = 3142 g m−3) compared with 71.0% and 78.4% obtained when a post‐ozonation step ( D O3 = 41.7 g m−3) was included. During conventional activated sludge treatment, appropriate nitrification levels are only achieved with high hydraulic retention time and/or biomass concentration. Ozonation after the secondary treatment, however, allows improved nitrogen content reduction with total nitrite elimination. Post‐ozonation also leads to a higher biodegradability of the treated wastewater. Thus, the ultimate BOD/COD ratio goes from 0.16 after biological oxidation to 0.34 after post‐ozonation with 41.7 g O3 m−3. © 1999 Society of Chemical Industry  相似文献   

3.
This study analyzes the performances of 2 methods of oxidation based on ozone, namely ozonation and ozone combined with hydrogen peroxide (O3/H2O2), on two biotreated municipal wastewater effluents. The main parameters monitored to evaluate the effectiveness of the processes were Chemical Oxygen Demand (COD), Dissolved Organic Carbon (DOC) and Biochemical Oxygen Demand (BOD5). Ozonation and O3/H2O2 treatment removed 44% and 48%, respectively, of the COD, after 90 min, of the secondary effluent of Calafell wastewater treatment plant (Spain). On the secondary effluent from the Grasse wastewater treatment plant (France), these same treatments (O3; O3/H2O2) achieved, respectively, a degradation of 52% and 100% of the COD after 60 min. The transferred ozone dose (TOD) during Calafell and Grasse effluents' ozonation were 122 mg·L?1 and 77 mg·L?1 after 90 min, respectively. A low removal of DOC was monitored during both O3 or O3/H2O2 treatments applied to Calafell wastewater, respectively 12% and 14%. Better DOC reductions were obtained on the water of Grasse treated with O3 or O3/H2O2, respectively, 48% and 60%. In addition, ammonia nitrogen was oxidized to nitrate nitrogen thus giving rise to an over ozone consumption. And finally, both processes proceeded with an increase of pH values. These results highlight the strong dependency of O3 or O3/H2O2 treatment effectiveness in terms of dissolved organic matter (DOM) removal and ozone consumption on wastewater composition (organic and inorganic substances).  相似文献   

4.
The efficiency and cost‐effectiveness of H2O2/UV for the complete decolorization and mineralization of wastewater containing high concentrations of the textile dye Reactive Black 5 was examined. Oxidation until decolorization removed 200–300 mg g?1 of the dissolved organic carbon (DOC). The specific energy consumption was dependent on the initial dye concentration: the higher concentration required a lower specific energy input on a weight basis (160 W h g?1 RB5 for 2.1 g L?1 versus 354 W h g?1 RB5 for 0.5 g L?1). Biodegradable compounds were formed, so that DOC removal could be increased by 30% in a following biological stage. However, in order to attain 800 mg g?1 overall mineralization, 500 mg g?1 of the DOC had to be oxidized in the H2O2/UV stage. A cost analysis showed that although the capital costs are much less for a H2O2/UV stage compared to ozonation, the operating costs are almost double those of ozonation. Thus, while H2O2/UV can compete with ozonation when the treatment goal only requires decolorization, ozonation is more cost‐effective in this case when mineralization is desired. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
Ozonation of a real red‐meat‐processing wastewater was conducted in a semi‐batch reactor to explore the possibility of the water reuse. The experimental results revealed that ozone was very effective in disinfection of the red‐meat‐processing wastewater. After 8 min of ozonation with an applied ozone dose of 23.09 mg min?1 liter?1 of wastewater, 99% of aerobic bacteria, total coliforms and Escherichia coli were inactivated. Empirical models were developed to predict the microbial inactivation efficacy of ozone from the CT values for the real red‐meat‐processing wastewater. A correlation was also derived to estimate the CT values from the applied ozone dose and the ozone contact time. The results also revealed that under the ozonation condition for 99% inactivation of aerobic bacteria, total coliforms and E coli, the decrease in the chemical oxygen demand and the 5‐day biological oxygen demand of the wastewater were 10.7% and 23.6%, respectively. However, ozonation under this condition neither improved the light transmission nor reduced the total suspended solids (TSS) despite of the decolorization of the wastewater after ozonation. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
This work deals with the biodegradability and toxicity of three non-steroidal anti-inflammatory drugs (NSAID) (diclofenac, ibuprofen and naproxen) treated by ozonation. The results show that the total removal of 200 mg L?1 of diclofenac and 100 mg L?1 of naproxen is possible using an ozone dose of 0.20 and 0.04 g L?1, respectively. For 200 mg L?1 of ibuprofen, 90% removal is achieved using an ozone dose of 2.3 g L?1. The BOD5/COD ratio, the Zahn-Wallens test and EC50 toxicity test (Microtox) are chosen as biological and toxicity indicators of NSAID intermediates. The evolution of BOD5/COD ratio during 1 hour of treatment is evaluated and the results show that ozonation improves the biodegradability for the three NSAID treated solution. The Zahn-Wellens test for diclofenac and ibuprofen solutions shows that biological mineralization, after 28 days, is higher for diclofenac than for ibuprofen solution. According to the Microtox test, the treatment with ozone removes the toxicity of the naproxen solution. Taking into account the results obtained with the biocompatibility tests it could be assumed that ozonation is an adequate treatment for removal NSAID in aquatic medium, and the ozonated effluents could be post-treated in a biological wastewater facility.  相似文献   

7.
In the present study ozonation process was implemented to analyze the effect of ozonation time on the rate of chemical oxygen demand (COD) removal, mineralization and rate of decolorization of azo dyes. Three types of azo dyes i.e. Acid Red 14, Direct Red 28 and Reactive Black 5 were selected. Decolorization and mineralization of samples were conducted in batch scale. The COD and color removal efficiency were found to be increasing at a certain time of ozonation. The results with Acid Red 14, Congo Red and Reactive Black 5 dyes solutions lead to maximum COD reduction of 75%, 67% & 50% respectively. 93%, 92% and 94% color removal were achieved after 25 min of ozonation time of the same dyes which highlighted that ozonation process was found to be more efficient for reactive dye decolorization. Ozonation by-products analyzed by ion chromatography resulted that it partially mineralized with the formation of chloride, fluoride, sulphate, nitrate and oxalate ions. During ozonation process a rapid decrease in pH value indicated the acidic nature of by-products. The effect of buffered dye solutions on the ozonoation process highlighted that the decolorization efficiency decreases in comparison to unbuffered dye solutions. Ozonation led to enhancement of biodegradability ratio (BOD5/COD) and increased electrical conductivity of the dye solutions. Optimum ozonation time required for degradation of dye solutions reflected the evaluation of energy consumption and cost of the treatment after ozonation.  相似文献   

8.
Ozonation of the commercially important, recalcitrant reactive dye intermediate 2‐naphthylamine 3,6,8‐trisulphonic acid (K‐Acid) was investigated. Ozonation performance was examined by following ozone absorption rates and K‐Acid, chemical oxygen demand and total organic carbon removals. Mean oxidation states and unidentified organic products were also determined. At pH 3, where direct ozone reactions are dominant, the second‐order rate constant between K‐Acid and molecular ozone was determined as 20 m ?1 s?1 for steady‐state aqueous ozone concentration. The competition kinetics approach was also adopted where a reference compound, phenol, and K‐Acid were subjected to ozonation. By applying this method, the second‐order reaction rate constant was found to be 76 m ?1 s?1. Common oxidation products formed during ozonation at pH 3, pH 7 and pH 7 with 1 mm hydrogen peroxide were identified as methoxy‐phenyl‐oxime, phenol, benzene, benzaldehyde and oxalic acid via high‐performance liquid chromatography and gas chromatography/mass spectrometry analyses. Continuous nitrate and sulphate evolution were observed during K‐Acid ozonation as a consequence of the abrupt release and subsequent oxidation of its amino and sulphonate groups. The number and amount of reaction products were most intensive for K‐Acid ozonation at pH 7 with 1 mm hydrogen peroxide. According to the acute toxicity tests conducted with Vibrio fischeri, ozonation products were not less toxic than the original K‐Acid solution that caused only 15% inhibition.  相似文献   

9.
In this study, the impact of ozone concentration (14 and 7mg/L?1 applied for 120min) and pH (10 and 12) on color removal, and reduction of dissolved organic matter (DOC) and total phenol of Kraft E1 effluent was investigated. The degradation kinetics for the all parameters at pH 12 were slower than of those at pH 10. The degradation at pH 10 ceased after approximately 120min, while for the ozonation at pH 12, ozone was still being consumed even after 5h of treatment. When the ozone dose was increased, the removal efficiency increased; however, the DOC removal efficiency continued limited.  相似文献   

10.
The combination of ozonation with UV irradiation can remove Tropaeolin O (AO6) and its by-products effectively and completely. The ozone dose affects the rate of decolorization, AO6 species removal, and dissolved organic carbon (DOC) reduction significantly. After 240 minutes of ozonation, the average DOC removal efficiency (ηDOC) for O3 alone was about 0.79, while ηDOC for O3/UV was 1.0. The average DOC removal rate was low at early stage of ozonation due to decolorization and low DOC. At later stage of ozonation, average DOC removal rate decreases because of the formation of persistent intermediates. The ozone consumption was consistent with ηDOC. The ratio of ozone consumption to ozone applied decreased from 14 to 12% when ηDOC < 40% because the decolorization in the early stage of the ozonation of AO6 may consume a relatively large amount of ozone. It was found that NO2, NO, CO2, and small amount of SO2 was detected in the off-gas. The effective concentration (EC50) increased from 23.48% to 100%, suggesting that the toxic reduction was achieved, and O3/UV system was superior to O3 alone system  相似文献   

11.
Removal efficiencies of endocrine disrupting chemicals (EDCs), bisphenol A and nonylphenol, during various types of water treatment processes were evaluated extensively using laboratory- and pilot-scale experiments. The specific processes of interest were coagulation/flocculation sedimentation/filtration (conventional water treatment process), powdered activated carbon (PAC), granular activated carbon (GAC), ozonation and chlorination. Batch sorption tests, coagulation tests, and ozone oxidation tests were also performed at higher concentrations with 14 EDCs including bisphenol A. The conventional water treatment process had very low removal efficiencies (0 to 7%) for all the EDCs except DEHP, DBP and DEP that were removed by 53%, 49%, and 46%, respectively. Ozonation at 1 mgO3/ L removed 60% of bisphenol A and 89% of nonylphenol, while chlorination at 1 mg/L removed 58% and 5%, respectively. When ozone and chlorine doses were 4 and 5 mg/L, respectively, both EDCs were not detected. PAC removal efficiencies ranged from 15% to 40% at 3 to 10 mg/L of PAC with a contact time of 15 minutes. In the high concentration batch sorption tests, EDC removal efficiencies by PAC were closely related to octanol-water partition coefficient (Kow). GAC adsorption was very effective water treatment process. The type and service time of GAC did not affect EDC removal efficiencies. The combination of ozonation and GAC in series appears to remove EDCs effectively to safe levels while conventional water treatment could not.  相似文献   

12.
Wastewaters generated by a factory processing marine products are characterized by high concentrations of organic compounds and salt constituents (>30 g dm?3). Biological treatment of these saline wastewaters in conventional systems usually results in low chemical oxygen demand (COD) removal efficiency, because of the plasmolysis of the organisms. In order to overcome this problem a specific flora was adapted to the wastewater from the fish‐processing industry by a gradual increase in salt concentrations. Biological treatment of this effluent was then studied in a continuous fixed biofilm reactor. Experiments were conducted at different organic loading rates (OLR), varying from 250 to 1000 mg COD dm?3 day?1. Under low OLR (250 mg COD dm?3 day?1), COD and total organic carbon (TOC) removal efficiencies were 92.5 and 95.4%, respectively. Thereafter, fluctuations in COD and TOC were observed during the experiment, provoked by the progressive increase of OLR and the nature of the wastewater introduced. High COD (87%) and TOC (99%) removal efficiencies were obtained at 1000 mg COD dm?3 day?1. © 2002 Society of Chemical Industry  相似文献   

13.
The treatment of a segregated textile wastewater containing reactive dyes was investigated in two continuous‐flow process trains using ozonation and biological processes. The degree of decolorization and dissolved organic carbon (DOC) removal achieved by ozonation followed by aerobic treatment (two‐stage) was compared with that found when an anaerobic and aerobic pretreatment was added (four‐stage). Although the biological pretreatment reduced color by ~70%, similar amounts of ozone were required in both trains to achieve high degrees of overall removal of color and DOC. In both trains, ozonation increased biodegradability in the following aerobic reactor, however, in order to reach ~80% overall DOC removal, a specific ozone absorption (A*) of ~6 gO3 gDOCo?1 was required and >50% of the DOC was mineralized in the ozone reactor. A comparison of cost estimates based on investment and operating costs for the process alternatives showed that a four‐stage train would reduce costs only if it enabled a decrease in A* to less than 2 gO3 gDOCo?1. Difficulties in comparing treatment processes for segregated vs full‐stream wastewaters are discussed. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
Ozonation is a widely used technology within the water industry. Bromate ion formed by oxidation of water containing bromide ion was studied with the Gas Ozone Test and Pilot Scale Ozonation. Bromate ion formation was investigated along with the removal of triazines and/or manganese. Under identical conditions of ozonation, BrO3 ? formation is specific for each water and depends on parameters such as Total Organic Carbon, UV absorbance at 254 nm, applied ozone and ozone residual. Pesticides degradation by ozonation alone cannot be achieved without the formation of BrO3 ? at a high concentration. Hydrogen peroxide, at a constant ozone dose, reduces the BrO3 ? formation. However, even with the use of hydrogen peroxide, the concentration of BrO3 ? can remain in excess of the provisional Maximum Contaminant Level (10 μg/L). For certain types of water, pesticide degradation is difficult to achieve if the MCL for BrO3 ? has to be met. Manganese oxidation by ozone appears to be achieved without high bromate formation; indeed the presence of manganese hinders BrO3 ? formation.  相似文献   

15.
The post-treatment of composting leachate via an ozonation process in laboratory scale was studied in batch mode. According to the experiments, the COD removal was 47% after 30 min of ozonation via 0.4 g/h ozone (equivalent to 2.8 mg O3/mg COD removed) at pH 9. In this circumstance, the removal of color and turbidity was also 86% and 89%, respectively. Increasing the ozone mass flow rate higher than 0.4 g/h had no considerable effect on the process variables. However, increasing the reaction time had a significant effect on both the removal of color and on COD of the leachate. Experimental data indicated that complete removal of color and 51% removal of COD were achieved after about 40 min of ozonation via 0.4 g/h ozone (equivalent to 3.3 mg O3/mg COD removed). The ozone consumption rate increased as the reaction progressed and reached 4.1 mg O3/mg COD removed after 60 min.  相似文献   

16.
The aim of this study was to compare the performance of coagulation, Fenton's oxidation (Fe2+/H2O2) and ozonation for the removal of chemical oxygen demand (COD) and colour from biologically pretreated textile wastewater. FeSO4 and FeCl3 were used as coagulants at varying doses and varying colour removal efficiency was measured. For the Fenton process, COD and colour removal efficiencies were found to be 78% and 95% for the Fenton process, and to be 64% and 71% for the Fenton-like process (Fe3+/H2O2), respectively. Ozonation experiments were conducted at different initial pH values and fixed ozone doses. Ozonation resulted in 43% COD and 97% colour removal whereas these rates increased to 54% and 99% when 5 mg/l hydrogen peroxide was added to the wastewater before ozonation at the same dose. The operating costs of all proposed treatment systems were also evaluated in this study.  相似文献   

17.
Unstretched films of natural rubber (NR) from Hevea brasiliensis were exposed to ozone flow of 15 ml min?1 from 4 to 300 min. The efficiency of reaction was determined by ozone consumption of NR films. Plots of reacted ozone mass versus film thickness show that the ozone penetration and the ozone reaction progressed into deeper layers (170 µm) than described in the literature (~0.5 µm). The previous proposed model based on viscometry measurements was corroborated by ozone consumption results. The effect of thickness on the O3/NR stoichiometric ratio indicated that the diffusion process that controls the ozonation in unstretched film does not consist of the boundary progression behind which all reactive sites have been saturated. Ozonation in unstretched rubber film, while being less efficient than ozonolysis in solution, does have a reaction efficiency of the same order of magnitude. NMR spectroscopy was used to characterise the products formed by ozonation. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
ABSTRACT

In this study, an ozonation process was used to increase biodegradability of textile wastewater by considering chemical oxygen demand (COD) and color removal. Response surface methodology was applied in order to determine the significance of independent variables which are initial pH, reaction time and ozone dose. While a biological oxygen demand (BOD)/COD rate of 0.315 was obtained at optimum conditions, which are pH 9, 75 min of reaction time and 26 mg/L ozone dose, color and COD removal was obtained at 74% and 39%, respectively. BOD/COD ratio value increased from 0.18 to 0.32 by ozonation process. In addition, k coefficient for BOD also increased from 0.21 to 0.30 d?1.  相似文献   

19.
This work evaluates Fenton oxidation for the removal of organic matter (COD) from cork‐processing wastewater. The experimental variables studied were the dosages of iron salts and hydrogen peroxide. The COD removal ranged from 17% to 79%, depending on the reagent dose, and the stoichiometric reaction coefficient varied from 0.08 to 0.43 g COD (g H2O2)?1 (which implies an efficiency in the use of hydrogen peroxide varying from 17% to 92%). In a study of the process kinetics, based on the initial rates method, the COD elimination rate was maximum when the molar ratio [H2O2]o:[Fe2+]o was equal to 10. Under these experimental conditions, the initial oxidation rate was 50.5 mg COD dm?3 s?1 with a rate of consumption of hydrogen peroxide of 140 mg H2O2 dm?3 s?1, implying an efficiency in the use of the hydrogen peroxide at the initial time of 77%. The total amount of organic matter removed by Fenton oxidation was increased by spreading the H2O2 and ferrous salt reagent over several fractions by 15% for two‐fractions and by 21% for three‐fractions. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Traditional treatment systems failed to achieve efficient degradation of anthraquinone dye intermediates at high loading. Thus, an airlift internal loop reactor (AILR) in combination with the TiO2‐photocatalytic ozonation (TiO2/UV/O3) process was investigated for the degradaton of 1‐amino‐ 4‐bromoanthraquinone‐2‐ sulfonic acid (ABAS). RESULTS: The AILR using Sphingomonas xenophaga as inoculum and granular activated carbon (GAC) as biocarrier, could run steadily for 4 months at 1000 mg L?1 of the influent ABAS. The efficiencies of ABAS decolorization and chemical oxygen demand (COD) removal in AILR reached about 90% and 50% in 12 h, respectively. However, when the influent ABAS concentration was further increased, a yellow intermediate with maximum absorbance at 447 nm appeared in AILR, resulting in the decrease of the decolorization and COD removal efficiencies. Advanced treatment of AILR effluent indicated that TiO2/UV/O3 process more significantly improved the mineralization rate of ABAS bio‐decolorization products with over 90% TOC removal efficiency, compared with O3, TiO2/UV and UV/O3 processes. Furthermore, the release efficiencies of Br? and SO42? could reach 84.5% and 80.2% during TiO2/UV/O3 treatment, respectively, when 91.5% TOC removal was achieved in 2 h. CONCLUSION: The combination of AILR and TiO2/UV/O3 was an economic and efficient system for the treatment of ABAS wastewater. © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号