首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One‐stage electrodialysis (ED) for lactic acid recovery with two‐ and three‐compartment water‐splitting ED (WSED) was investigated using various ion‐exchange membranes in order to overcome the inefficiency of two‐stage ED, which consists of desalting ED for recovery and partial purification and subsequent WSED for acidification. The two‐compartment WSED had a low current efficiency and high energy consumption in spite of a simple stack configuration. A three‐compartment WSED successfully converted sodium lactate in the fermentation broth into lactic acid and sodium hydroxide with average yields of 96% and 93%, respectively. In relation to lactic acid purification, of the membranes tested in this study, the highest glucose rejection, 98.3%, was achieved using a PC 100D membrane. The CMS membrane rejected magnesium and calcium at levels as high as 81.7% and 78.5%, respectively. We concluded that the three‐compartment WSED with properly chosen membranes, enabled lactic acid to be recovered directly from the fermentation broth. © 2001 Society of Chemical Industry  相似文献   

2.
Microporous polyamide membranes were activated by 1,1′‐carbonyldiimidazole (CDI) and subsequently bound with hydroxyethyl cellulose (HEC) to amplify reactive groups. Then poly‐L ‐lysine (PLL) as ligand was immobilized onto the HEC‐nylon membranes. The contents in HEC and PLL of PLL‐attached membranes were 153.2 and 63.8 mg (g nylon membrane)?1, respectively. Such PLL‐HEC affinity membranes were used to adsorb bilirubin from bilirubin‐phosphate and bilirubin‐albumin solutions. The adsorption mechanism of bilirubin and the effects of temperature and ionic strength on adsorption were investigated by batch experiments. The results showed that the adsorption capacity increased with increasing temperature but decreased with increasing NaCl concentration, and the adsorption isotherm fitted the Freundlich model well. Dynamic experiments showed that PLL‐attached membranes can readily remove the bilirubin from bilirubin‐albumin solutions. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
Lactic acid has long been widely used in many applications. Currently, the worldwide market is increasing due to the discovery of biodegradable polylactic acid. In this work, L‐lactic acid separations from filamentous fungal fermentation broth using ion‐exchange chromatography and in‐house electrodialysis, were studied and compared. Dowex Marathon WBA was used for the lactic acid separation. The adsorption equilibrium followed a Langmuir isotherm. The optimal conditions for lactic acid adsorption in a fixed‐bed column were at pH 6.0, and 0.8 mL/min and elution by a mixture of 1.0 M sulfuric acid and 1.0 M phosphoric acid in a ratio of 30:70 at 0.3 mL/min. The final lactic acid recovery was 76 % with 90 % purity. A laboratory scale in‐house electrodialysis apparatus was constructed with an effective membrane area of 2.925 · 10–3 m2. The effects of feeding solution concentration, flow rate, pH of the fermentation broth, and applicable voltage were studied. Under the optimal conditions, lactic acid recovery was 92 % with 100 % purity and a specific energy consumption of 0.6122 kWh/kg.  相似文献   

4.
The DNA adsorption properties of poly‐L ‐lysine‐immobilized poly(2‐hydroxyethyl methacrylate) (pHEMA) membrane were investigated. The pHEMA membrane was prepared by UV‐initiated photopolymerization and activated with epichlorohydrin. Poly‐L ‐lysine was then immobilized on the activated pHEMA membrane by covalent bonding, via a direct chemical reaction between the amino group of poly‐L ‐lysine and the epoxy group of pHEMA. The poly‐L ‐lysine content of the membrane was determined as 1537 mg m?2. The poly‐L ‐lysine‐immobilized membrane was utilized as an adsorbent in DNA adsorption experiments. The maximum adsorption of DNA on the poly‐L ‐lysine‐immobilized pHEMA membrane was observed at 4 °C from phosphate‐buffered salt solution (pH 7.4, 0.1 M; NaCl 0.5 M) containing different amounts of DNA. The non‐specific adsorption of DNA on the plain pHEMA membrane was low (about 263 mg m?2). Higher DNA adsorption values (up to 5849 mg m?2) were obtained in which the poly‐L ‐lysine‐immobilized pHEMA membrane was used. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Lysine fermentation broth was desalinated by electrodialysis to reduce hardness concentrations as a pretreatment procedure for the purification and recovery of amino acids. Electrodialysis performance was investigated in terms of the rate of reduction in conductivity in dilute solutions and electrodialysis cell resistance for different ion exchange membranes at a constant current density. Among the membranes investigated in this study, membranes with high water content showed the better performance for hardness removal. Fouling experiments revealed that organics gave rise to fouling effects on the anion exchange membrane during demineralization of the lysine fermentation broth. The pulsed electric field with the half‐wave power enhanced the electrodialysis performances by mitigating membrane fouling in desalination of the lysine fermentation broth. This study successfully demonstrated the potential use of pulse power as an effective cleaning‐in‐place (CIP) method during electrodialysis of fermentation broth. © 2002 Society of Chemical Industry  相似文献   

6.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Molecularly imprinted (MIP) composite membranes were prepared using conventional interfacial polymerization technique that has been often used for the preparation of reverse osmosis (RO) membrane. Target molecules (D ‐serine) were used together with the piperazine (PIP) and Trimesoyl chloride (TMC) for the interfacial polymerization of the active layer with chiral spaces in it on the surface of the polysulfone ultrafiltration membranes. After formation of the polyamide composite membranes, the target molecules in the active layers were removed and MIP composite membranes were prepared. The MIP membranes prepared so were then characterized with analytical methods and proved to be effective for the selective permeation of D ‐serine. When serine racemate was used for optical resolution, the diffusion rate of the D ‐serine appeared to be faster than that of the L ‐serine and in permeates, the concentration of the D ‐serine increased with operation time. When the operating time reached 60 h, enantiomeric excess (% ee) of the serine mixture in permeates became about 80%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1866–1872, 2007  相似文献   

8.
Enantioselective membrane was prepared using nitrocellulose as membrane material. The flux and permselective properties of membrane using water solution of D ,L ‐tyrosine as feed solution were studied. The top surface and cross‐section morphology of the resulting membrane were examined by scanning electron microscopy. The optical resolution of over 85% enantiomeric excess was achieved when the enantioselective membrane was prepared with 25 wt % nitrocellulose and 15 wt % N,N‐dimethylformamide in the casting solution of methanol, 10°C temperature of water bath for the gelation of the membrane, and the operating pressure and the feed concentration of the D ,L ‐tyrosine were 6 kgf/cm2 and 0.25 mg/mL, respectively. Since the nitrocellulose contains a large amount of chirality active carbons on the backbone structure and is possible to form helical structure, it is considered to be the reason for the enantioselectivity of the membrane. This is the first report that nitrocellulose can be used as a membrane material. This work indicates that the large‐scale purification of chiral molecules from racemic mixtures will be realized by the enantioselective membrane technique in the near future and that the enantioselective nitrocellulose membrane could soon become very attractive for industrial uses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A process to obtain L ‐valine has been developed using fluidized and packed bed reactors with L ‐aminoacylase (from hog kidney) immobilized by covalent binding. L ‐Valine production using the immobilized derivative of L ‐aminoacylase in fluidized and packed bed reactors was studied at three different substrate concentrations and two different flow rates. Higher productions were obtained in the packed bed reactor in all cases. The different solubilities of L ‐valine and acetyl‐D ‐valine in ethanol were used to purify L ‐amino acid from the reactor effluents. The amount of added ethanol did not influence the separation yields, although the purity of L ‐valine was strongly affected by this parameter. The last step involved was racemization of the unhydrolyzed acetyl‐D ‐valine, which was then used as substrate in a new reaction cycle. © 1999 Society of Chemical Industry  相似文献   

10.
In this article, a new copolymer of L ‐aspartic acid and L ‐glutamic acid, which may be a biodegradable high molecular polymer and can be used more widely in many areas, was synthesized. The conditions of preparation, such as catalyst, reaction time, reaction temperature, the amount of catalyst, the times of adding catalyst, and the molar ratio of L ‐aspartic acid to L ‐glutamic acid, were optimized. The copolymer was characterized by 13C NMR, infrared spectroscopy, and X‐ray diffractometer. The molecular weight was determined by GPC. The result indicated that production yield, purity of product, and molecular weight of product increased with amount of catalyst and molar ratio of L ‐aspartic acid to L ‐glutamic acid increasing. The best condition of preparation was the following: reacting 2–4 h at the temperature of 180–200°C. The product yield with the molecular weight 13,000.00 reached 63.2% and the purity of product was 96.33% when the copolymerization was carried out at the temperature of 200°C under vacuum for 2 h. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3626–3633, 2006  相似文献   

11.
The (R)‐α‐lipoyl‐glycyl‐L ‐prolyl‐L ‐glutamyl dimethyl ester codrug (LA‐GPE, 1 ) was synthesized as a new multifunctional drug candidate with antioxidant and neuroprotective properties for the treatment of neurodegenerative diseases. Physicochemical properties, chemical and enzymatic stabilities were evaluated, along with the capacity of LA‐GPE to penetrate the blood–brain barrier (BBB) according to an in vitro parallel artificial membrane permeability assay for the BBB. We also investigated the potential effectiveness of LA‐GPE against the cytotoxicity induced by 6‐hydroxydopamine (6‐OHDA) and H2O2 on the human neuroblastoma cell line SH‐SY5Y by using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) reduction assay. Our results show that codrug 1 is stable at both pH 1.3 and 7.4, exhibits good lipophilicity (log P=1.51) and a pH‐dependent permeability profile. Furthermore, LA‐GPE was demonstrated to be significantly neuroprotective and to act as an antioxidant against H2O2‐ and 6‐OHDA‐induced neurotoxicity in SH‐SY5Y cells.  相似文献   

12.
《分离科学与技术》2012,47(1):165-175
ABSTRACT

A bipolar (BP) membrane electrodialysis (EDBM) was used to recover the alpha-ketoglutaric acid (AKG) from the model broth. A two-chamber EDBM membrane stack consisting of an anion exchange membrane and a BP membrane was used. The effect of the initial composition, applied current density, and pH of diluate on the efficiency of EDBM processes was investigated. The obtained results showed that the used membrane stack configuration allows complete separation of AKG from glucose and ethanol and simultaneous conversion of AKG salts to the acidic form. The scale-up of the EDBM process for model fermentation broth was also carried out.  相似文献   

13.
BACKGROUND: Amino acids (AAs) are usually produced commercially using chemical, biochemical and microbiological fermentation methods. The product obtained from these methods undergoes various treatments involving extraction and electrodialysis (ED) for salt removal and AA recovery. This paper describes an electro‐membrane process (EMP) for the charge based separation of amino acids. RESULTS: Iso‐electric separation of AAs (GLU–LYS) from their mixture, using ion‐ exchange membranes (IEMs) has been achieved by an efficient and indigenous EMP. It was observed that electro‐transport rate (flux) of glutamic acid (GLU) at pH 8.0 (above its pI) was extremely high, while that for lysine (LYS) (pH 9.6) across the anion‐exchange membrane (AEM) was very low, under similar experimental conditions. Under optimum experimental conditions, separation of GLU from GLU–LYS mixture was achieved with moderate energy consumption (12.9 kWh kg?1), high current efficiency (CE) (65%) and 85% recovery of GLU. CONCLUSIONS: On the basis of the electro‐transport rate of AA and membrane selectivity, it was concluded that the separation of GLU–LYS mixture was possible at pH 8.0, because of the oppositely charged nature of the two amino acids due to their different pI values. Moreover, any type of membrane fouling and deterioration in membrane conductivity was ruled out under experimental conditions. This work clearly demonstrates the great potential of EMP for industrial applications. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue‐engineering applications. In this study, electrospun poly(L ‐lactide)/poly(ε‐caprolactone) (PLLA/PCL) blend fibrous membranes with defect‐free morphology and uniform diameter were optimally prepared by a 1 : 1 ratio of PLLA/PCL blend under a solution concentration of 10 wt %, an applied voltage of 20 kV, and a tip‐to‐collector distance of 15 cm. The fibrous membranes also showed a porous structure and high ductility. Because of the rapid solidification of polymer solution during electrospinning, the crystallinity of electrospun PLLA/PCL blend fibers was much lower than that of the PLLA/PCL blend cast film. To obtain an initial understanding of biocompatibility, adipose‐derived stem cells (ADSCs) were used as seed cells to assess the cellular response, including morphology, proliferation, viability, attachment, and multilineage differentiation on the PLLA/PCL blend fibrous scaffold. Because of the good biocompatibility and nontoxic effect on ADSCs, the PLLA/PCL blend electrospun fibrous membrane provided a high‐performance scaffold for feasible application in tissue engineering using ADSCs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Dihydroxyacetone phosphate (DHAP)‐dependent aldolases have been widely used for the organic synthesis of unnatural sugars or derivatives. The practicality of using DHAP‐dependent aldolases is limited by their strict substrate specificity and the high cost and instability of DHAP. Here we report that the DHAP‐dependent aldolase L ‐rhamnulose 1‐phosphate aldolase (RhaD) accepts dihydroxyacetone (DHA) as a donor substrate in the presence of borate buffer, presumably by reversible in situ formation of DHA borate ester. The reaction appears to be irreversible, with the products thermodynamically trapped as borate complexes. We have applied this discovery to develop a practical one‐step synthesis of the non‐caloric sweetener L ‐fructose. L ‐Fructose was synthesized from racemic glyceraldehyde and DHA in the presence of RhaD and borate in 92 % yield on a gram scale. We also synthesized a series of L ‐iminocyclitols, which are potential glycosidase inhibitors, in only two steps.  相似文献   

16.
A novel biocatalytic process for production of L ‐homoalanine from L ‐threonine has been developed using coupled enzyme reactions consisting of a threonine deaminase (TD) and an ω‐transaminase (ω‐TA). TD catalyzes the dehydration/deamination of L ‐threonine, leading to the generation of 2‐oxobutyrate which is asymmetrically converted to L ‐homoalanine via transamination with benzylamine executed by ω‐TA. To make up the coupled reaction system, we cloned and overexpressed a TD from Escherichia coli and an (S)‐specific ω‐TA from Paracoccus denitrificans. In the coupled reactions, L ‐threonine serves as a precursor of 2‐oxobutyrate for the ω‐TA reaction, eliminating the need for employing the expensive oxo acid as a starting reactant. In contrast to α‐transaminase reactions in which use of amino acids as an exclusive amino donor limits complete conversion, amines are exploited in the ω‐TA reaction and thus maximum conversion could reach 100%. The ω‐TA‐only reaction with 10 mM 2‐oxobutyrate and 20 mM benzylamine resulted in 94% yield of optically pure L ‐homoalanine (ee>99%). However, the ω‐TA‐only reaction did not produce any detectable amount of L ‐homoalanine from 10 mM L ‐threonine and 20 mM benzylamine, whereas the ω‐TA reaction coupled with TD led to 91% conversion of L ‐threonine to L ‐homoalanine.  相似文献   

17.
L ‐Lactic acid production from beet molasses by Lactobacillus delbrueckii CECT 286 in a continuous fermenter‐ion exchange resins system has been investigated and compared with that observed in a conventional chemostat. The principle of this method is to remove the lactate during the course of fermentation as it is formed by adsorption to an anion exchange resin (Amberlite IRA‐420) in the carbonate form and to overcome its inhibitory effects on lactic acid bacteria by maintaining low lactate concentrations in the medium. Ammonium lactate was formed by percolating ammonium carbonate solution through this resin and it was converted to lactic acid by treatment with a cation exchange resin (Amberlite IR‐120) in hydrogen form. Compared with a conventional chemostat, this fermentation–ion exchange resins system enhanced the fermentation, controlled the pH, and showed the remarkable effect of increasing the yields of lactic acid from sucrose and biomass from sucrose due to the complete utilization of sucrose. © 1999 Society of Chemical Industry  相似文献   

18.
In a 5 dm3 stirred tank reactor, bioconversion of 30 g benzaldehyde by cells of Torulaspora delbrueckii yielded 22.9 g of pure L ‐phenylacetylcarbinol (L ‐PAC). Facile functional group transformation of 4.5 g of L ‐PAC to 2‐(methylimino)‐1‐phenyl‐1‐propanol by exposure to microwave irradiation for 9 min resulted in 2.48 g of product. Conversion of 4.8 g of 2‐(methylimino)‐1‐phenyl‐1‐propanol to 3.11 g of ephedrine was achieved by exposure to microwaves in a reaction time of 10 min. The identity of all the products was confirmed by 1H NMR and FT‐IR analysis. © 2002 Society of Chemical Industry  相似文献   

19.
Syntheses and biodegradation of statistical copolymers of D ,L ‐lactide (D ,L ‐LA) with trimethylene carbonate (TMC), rac‐1‐methyltrimethylene carbonate (1‐MTMC) and 2,2‐dimethyltrimethylene carbonate (2,2‐DTMC) were investigated at various monomer ratios using SmMe(C5Me5)2THF as an initiator at 80 °C for 24 h in toluene. Biodegradations of poly(D ,L ‐LA‐co‐racemo‐1‐MTMC) (95/5) and poly(D ,L ‐LA‐co‐2,2‐DTMC) (98/2) with a compost at 60 °C proceed rapidly. Enzymatic degradations of these polymers were also performed using cholesterol esterase, lipoprotein lipase and proteinase K. Only poly(D ,L ‐LA‐co‐TMC) was biodegraded with cholesterol esterase, while poly(TMC), poly(1‐MTMC), poly(2,2‐DTMC) and poly(D ,L ‐LA) were barely degraded with these enzymes. Biodegradations of poly(D ,L ‐LA‐co‐TMC) (87/13) and poly(D ,L ‐LA‐co‐racemo‐1‐MTMC) (95/5) are rapid using proteinase K. Physical properties of these copolymers were also described. © 2003 Society of Chemical Industry  相似文献   

20.
The kinetics of the asymmetric hydrolysis of N‐acetyl‐DL ‐butyrine catalyzed by L ‐aminoacylase to obtain optically pure L ‐butyrine is described. Some of the constants are determined from the initial reaction rates and others from long‐term experiments in batch reactors by the numerical integration of the reactor design equation and minimization of the kinetic parameters. The methodology described can be applied to the kinetic study of other complex biocatalytic systems. Studies on enzyme activation by adding different divalent metal ions and enzymatic deactivation are also included. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号