首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of diesel particulate filters wash‐coated with highly dispersed nano‐metric ceria particles for continuous regeneration has been investigated. To this end, catalytic filters were prepared, soot‐loaded (avoiding the formation of the cake layer), and regenerated—under isothermal conditions—at temperature ranging from 200–600°C. Results have shown that catalytic oxidation of soot starts from 300°C and, at all temperatures, the selectivity to CO2 is higher than 99%. 475°C is the minimum temperature at which the filter is regenerated via catalytic path. At this temperature, the catalytic filter maintains substantially the same performance over repeated cycles of soot loading and regeneration, indicating that the thermal stability of ceria is preserved. This has been further confirmed by comparison between the outcomes obtained from characterization (X‐ray powder diffraction, N2 adsorption at 77 K, Hg intrusion porosimetry, and scanning electron microscope/energy dispersive X‐ray analysis) of fresh filter and filter subjected to repeated regeneration tests. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3442–3449, 2017  相似文献   

2.
Potassium‐modified FeCrAl alloy wire mesh was developed as a catalytic diesel particulate filter to suppress the emission of soot from a diesel engine. Potassium species were deposited on wire mesh by a chemical vapor deposition method, in which a model soot was used to convert KOH into metallic K at high temperatures to subsequently activate the wire mesh. Tests showed that metallic K reacted with the enriched Al2O3 component on the surface derived from segregation and successive oxidation during precalcination. The resulting layer of K‐O‐Al species offers remarkable activity and stability for the catalytic oxidation of diesel soot. The K‐activated wire mesh could lower the initial temperature of soot combustion and maintain the activity for several cycles.  相似文献   

3.
The catalytic behaviors of Ag, Cu, and Au loaded fumed SiO2 have been investigated for diesel soot oxidation. The diesel soot generated by burning pure Mexican diesel in laboratory was oxidized under air flow in presence of catalyst inside a tubular quartz reactor in between 25 and 600 °C. UV–Vis optical spectroscopy was utilized to study the electronic states of Ag, Cu, and Au(M) in M/SiO2 catalysts. The soot oxidation was seen to be strongly enhanced by the presence of metallic silver on 3 % Ag/SiO2 surface, probably due to the formation of atomic oxygen species during the soot oxidation process. The catalyst is very stable due to the stability of Ag0 species on the catalyst surface and high thermal stability of SiO2. Obtained results reveal that though the freshly prepared 3 % Cu/SiO2 is active for soot oxidation, it gets deactivated at high temperatures in oxidizing conditions. On the other hand, 3 % Au/SiO2 catalyst does not present activity for diesel soot oxidation in the conventional soot oxidation temperature range. The catalytic behaviors of the supported catalyst samples have been explained considering the electron donating ability of the metals to generate atomic oxygen species at their surface.  相似文献   

4.
Photocatalyst loading on a floating substitute is accepted as a promising method for the remediation of diesel‐polluted surface water. Therefore, novel photocatalysts based on polyurethane foams modified with silver/titanium dioxide/graphene ternary nanoparticles (PU–Ag/P25/G) were synthesized and investigated. Scanning electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, Fourier transform infrared spectroscopy, and UV–visible spectroscopy showed the coexistence of Ag, Degussa P25 (P25), and graphene and the nanoscale dispersion of nanoparticles in the matrix and on the surface of the polyurethane (PU) foam. The diesel adsorption capacity of the photocatalyst reached 96 g/g. The maximum diesel degradation was found to be 76% in a period of 16 h. Compared with polyurethane‐foam‐supported P25/graphene (PU–P25/G) and polyurethane‐foam‐supported P25 (PU–P25), all of the adsorption isotherm and degradation kinetics followed the order PU–Ag/P25/G > PU–P25/G > PU–P25 > PU; this was due to the loading of different nanoparticles. Moreover, the degradation efficiency was reduced only 5% after five consecutive reactions; this showed good stability and reusability of the photocatalyst for surface water restoration. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43400.  相似文献   

5.
Potassium and strontium substituted praseodymium manganate type perovskite catalyst coated on ceramic foam filters have been studied for diesel particulate removal. The synthesized catalyst coated filter pieces have been characterized by using XRD, SEM and TG analysis, whereas their catalytic activity towards soot oxidation was tested using a bench scale facility with real diesel engine exhaust. The catalyst coated filters decrease the soot oxidation Tinitial value by 150 °C and Tfinal by 100 °C as compared to bare soot oxidation reaction, which can be considered as high activity under the actual conditions of diesel engine. The catalytic materials show good thermal stability, while their low cost will also add to their potential for practical applications. Although perovskites have been studied for laboratory evaluations of catalytic soot oxidation, present results further substantiate the possibility of using low-cost, supported, non-noble metal based catalysts for diesel exhaust emission control applications, especially for the cost-effective retrofitment of in-use vehicles with old generation engines.  相似文献   

6.
Reduced graphene oxide (RGO) decorated with silver nanoparticles (AgNPs) was synthesized by a facile solution‐based approach in chitosan (CS) solution. The morphology and elemental composition of as‐prepared Ag/RGO/CS colloid were characterized by SEM and energy dispersive X‐ray spectroscopy, respectively. TEM images show that most of the AgNPs are uniformly dispersed in the CS matrix while the other nanoparticles are decorated on the RGO nanosheets. XRD indicates that the interlayer distance of RGO is between 0.34 and 1.87 nm while the diameter of face‐centered cubic AgNPs is no more than 30 nm. Fourier transform infrared spectroscopy of the Ag/RGO/CS colloid confirms the formation of AgNPs and RGO. X‐ray photoelectron spectroscopy proves that both the Ag ? O bond and the C ? N bond exist in the nanocomposite. Antimicrobial assays were performed using the most common species of Gram bacteria. The inhibitory effect indicates that the incorporation of AgNPs and RGO significantly improves the antimicrobial activity of CS colloid. In addition, the nanocomposite colloid exhibits significant catalytic activity toward the reduction of 4‐nitrophenol by NaBH4. © 2018 Society of Chemical Industry  相似文献   

7.
Iron oxide modified by potassium, i.e. Fe1.9K0.1O3, exhibits high catalytic performance for the simultaneous conversion of soot and NOx into CO2 and N2. The present study shows that long‐time treatment of the catalyst leads to a drastic decrease in the activity, whereas even the aged catalyst maintains considerable activity. On the other hand, long‐time treatment causes selective N2 formation, i.e. no more formation of the byproduct N2O. This alteration of catalytic performance is likely due to agglomeration of the promoter potassium being present at the surface of catalyst. Detailed experiments were carried out with a more realistic diesel model exhaust gas to confirm that Fe1.9K0.1O3 is a suitable catalyst for the simultaneous removal of soot and NOx between 350 and 480 °C. It was assumed that (CO) intermediates, formed by the catalytic reaction of NOx and oxygen with the soot surface, are the reactive species in NOx‐soot conversion.  相似文献   

8.
The embodiment of the NOx selective catalytic reduction (SCR) functionality in a diesel particulate filter (DPF), so‐called SCR‐on‐Filter (SCRoF), is investigated through numerical modeling with SCR kinetics corresponding to Cu‐Chabazite and Fe‐ZSM5 catalysts. The results of the simulations of the SCR activity, performed in the absence and presence of soot, indicate that the presence of soot negligibly affects the NOx conversion efficiency, given the slow dynamics of passive regeneration. Conversely, the reduction in cake thickness by soot passive oxidation is significantly different in the absence of SCR activity (uncatalyzed DPF) compared to that in its presence (SCRoF). In fact, in the SCRoF only 60–80% of the original soot consumption obtained in the absence of SCR reaction over 1 h can be achieved. Individual Cu‐Chabazite and Fe‐ZSM5 catalysts, as well as in‐series layers of the two catalysts, are investigated to devise the widest temperature window for SCRoF. © 2016 American Institute of Chemical Engineers AIChE J, 63: 238–248, 2017  相似文献   

9.
The (computer designed shape) CDS type of Pd‐Ag/Al2O3 catalyst in single‐stage reactor provides superior catalytic activity and selectivity of ethylene in comparison with those of existed two‐stage reactors packed with G‐58B catalyst under industrial operating conditions. In this research, the contents of palladium and silver of catalysts were analyzed by inductive coupling plasma (ICP). The X‐ray photoelectron spectroscopy (XPS) showed that Pd‐Ag alloy has been formed. Higher yield of ethylene may be interpreted by both geometric and electronic effect induced from silver metal. By means of Pyrolysis/GC/MS analysis of used catalysts, the components of carbonaceous deposits were found to be n‐alkenes, including n‐C8 ~ n‐C16 or n‐C18, which may result from oligomerization of acetylene.  相似文献   

10.
K–Ca–Si–O glass was applied to metal supports for use as a catalyst for diesel soot combustion. Glasses were processed from the melt and by a sol–gel route. Catalyst activity for the oxidation of diesel exhaust soot and flame soot from an oil lamp was compared by thermogravimetric analysis (TGA). The results show that a K-based catalytic glass coating on metal substrates can reduce the temperature where half of the engine soot is oxidized (T50) to as low as 360 °C under loose contact conditions, and offers catalytic stability for long term combustion cycling. Scanning electron microscopy observations show that sol–gel glass processing is effective for coating complex wire mesh shapes without pore clogging.  相似文献   

11.
The nanostructured platinum–bismuth catalysts supported on carbon (Pt3Bi/C, PtBi/C and PtBi3/C) were synthesised by reducing the aqueous metal ions using sodium borohydride (NaBH4) in presence of a microemulsion. The amount of metal loading on carbon support was found to be 10 wt.‐%. The catalyst materials were characterised by X‐ray diffraction (XRD), X‐ray fluorescence (XRF), transmission electron microscope (TEM) and electroanalytical techniques. The Pt3Bi/C, PtBi/C and PtBi3/C catalysts showed higher methanol tolerance, catalytic activity for oxygen reduction reaction (ORR) than Pt/C of same metal loading. The electrochemical stability of these nano‐sized catalyst materials for methanol tolerance was investigated by repetitive cycling in the potential range of –250 to 150 mVMSE. Bi presents an interesting system to have a control over the activity of the surface for MOR and ORR. All Pt–Bi/C catalysts exhibited higher mass activities for oxygen reduction (1–1.5 times) than Pt/C. It was found that PtBi/C catalyst exhibits better methanol‐tolerance than the other catalysts.  相似文献   

12.
《Catalysis communications》2007,8(11):1621-1624
KNO3 or K2CO3 supported Mg–Al hydrotalcite-based mixed oxide catalysts were investigated for the catalytic combustion of diesel soot. The activity of the catalysts before and after reactions with soot was conducted under the flow of air and high purity He gas. It has been found that K shows a great promotion of the catalytic activity, and deactivation was not detected after the reaction with soot in a muffle furnace in a static air atmosphere. The active phases were examined by XRD. The high activity is found to be due to an interaction between K and Mg(Al), which may weaken the Mg(Al)–O bonds, thus facilitating the mobility of the O species.  相似文献   

13.
A study of nitrous oxide (N2O) reduction with methane (CH4) and propene (C3H6) in the presence of oxygen (5%) over Ag/Al2O3, Rh/Al2O3 and Ag–Rh/Al2O3 catalysts, with Ag and Rh loadings of 5 wt% and 0.05 wt% respectively, has been performed. From the results, it was observed that the Ag–Rh bimetallic catalyst was the most active for both nitrous oxide removal (more than 95%) and hydrocarbon oxidation. This high activity seems to be connected with a synergistic effect between Ag and Rh. The findings from X‐ray diffraction and X‐ray photoelectron spectroscopy studies showed also, that there were no strong interactions (eg alloying) between Ag and Rh. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
开发低温下高催化活性的柴油机碳烟颗粒燃烧催化剂是当前环境催化领域的热点问题。利用共沉淀的方法制备了用于碳烟催化燃烧反应的Ag/Ce0.75Zr0.25O2催化剂。活性评价结果表明,相对于Ce0.75Zr0.25O2催化剂,Ag的引入可显著降低碳烟催化燃烧温度。而且,Ag的负载量存在一个最佳值。以XRD、in-situ XRD、BET、TPR等表征手段探究了该系列催化剂结构性质及其变化产生的影响。结果表明,Ag与Ce物种间的相互作用可显著降低催化剂(特别是CeO2表面氧)的还原温度。该相互作用使Ag/Ce0.75Zr0.25O2催化剂在一定温度下(>200℃)就表现出Ag+的性质。这些性质与该催化剂具有较高的碳烟氧化活性相关。而且,该催化剂也表现出良好的稳定性。  相似文献   

15.
The combined effects of soot load and catalyst activity on the regeneration dynamics of a catalytic diesel particulate filter have been investigated through transient CFD‐based simulations of soot combustion in a single‐channel configuration. The soot load was changed by varying the amount of soot accumulated as cake layer, while keeping the amount of soot trapped inside the catalytic wall constant. Substantially uniform soot combustion that allows reasonably fast regeneration of the filter under controlled temperature conditions has been simulated only in the absence of cake and at relatively low catalyst activity. Conversely, in the presence of cake, numerical predictions have shown that, regardless of both soot load and catalyst activity, fast regeneration always occurs by propagation of sharp reaction fronts that result in high temperature rises. These findings highlight the importance of avoiding the cake formation, while properly optimizing the catalyst activity, to conduct a safe and effective regeneration of catalytic filters. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1714–1722, 2018  相似文献   

16.
The present investigation concerns the phenomena that occur during the non‐catalytic regeneration of Diesel Particulate Filters (DPFs). The temperature evolution in the filter has been correlated to the emissions of CO, HC, NO, and NO2 during the loading and regeneration process. The emissions were assessed over both the diesel oxidation catalyst (DOC) and the DPF, in order to characterise the chemical species evolution inside the after‐treatment line. Different regeneration temperatures, which have been found to have a strong impact on the evolution of the soot oxidation rate, have been assessed. Finally, the particulate emissions during regeneration have been measured on a number and size basis.  相似文献   

17.
L. Jiang  C. Li  Z. Li  S. Zhang 《化学工程与技术》2013,36(11):1891-1898
A series of CuO/Ce0.6Zr0.4O2 catalysts doped with rare earth (Y, La) oxides and transition metal (Fe, Co, Ni) promoters were synthesized by the coprecipitation method. The effects of the additive type and content on the structure, redox properties, and water‐gas shift (WGS) catalytic activity were investigated in detail by X‐ray diffraction, N2 physisorption, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, H2 temperature‐programmed reduction, and Raman spectroscopy. The catalytic activity was tested in terms of CO in H2‐rich coal‐derived synthesis gas, which simulated the actual gas composition of an integrated gasification combined cycle system. The experimental results revealed the beneficial role of doping with 3 wt % Fe in enhancing the catalytic performance by increasing the oxygen storage and mobility capacity, the reducibility, and the synergistic interaction between copper oxide and ceria‐zirconia.  相似文献   

18.
The synthesis and utilization of mesoporous Cu‐MCM‐41 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol is described in this article. Physicochemical properties of these Cu‐MCM‐41 catalysts have been investigated by N2‐physisorption, X‐ray diffraction, inductively coupled plasma, N2O titration, transmission electron microscopy, temperature programmed reduction, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. It was found that the copper loading significantly influenced the pore structure and copper surface area of the catalyst. High catalytic performance is obtained over a 20Cu‐MCM‐41 catalyst with a full DMO conversion and EG yield of 92% at a LHSV of 3.0 h?1. The catalytic performance of optimized 20Cu‐MCM‐41 catalyst could be attributed to the fine copper dispersion and large copper surface areas. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2530–2539, 2013  相似文献   

19.
BACKGROUND: On the basis of effective bioaffinity adsorption of Ag+, silver nanoparticles (Ag NPs) were synthesized on the surface of chitosan‐TiO2 adsorbent (CTA) by TiO2 photocatalysis for crystal growth. RESULTS: Among the microstructure characterizations of the resulting silver nanoparticles‐ loaded chitosan‐TiO2 adsorbent (Ag‐CTA), X‐ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive X‐ray (EDX) revealed the formation of metallic Ag on the CTA, which was further confirmed by the surface plasmon resonance of Ag NPs in the UV‐visible absorption spectrum. The underlying mechanism behind the formation of Ag NPs on the CTA by TiO2 photoreduction was studied by Fourier transform infrared (FTIR) spectroscopy. The distinctive feature of Ag‐CTA after adsorption was the highly efficient antimicrobial activity in inactivating different test strains. In the case of Escherichia coli, 1.50 mg 1.67 wt% Ag‐CTA could totally inhibit 1.0–1.2 × 107 colony forming units (CFU) in 100 mL nutrient medium, which was superior to that previously reported. CONCLUSIONS: CTA effectively adsorbed the precious metal ion Ag+ onto active imprinting sites on the adsorbent and then exerted efficient antimicrobial effects against diverse microbes. This research will be useful for designing a novel CTA‐based wastewater treatment for multi‐functional performance. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
Three commercial carbon black samples as well as self‐made C3H6 soot were investigated for their reactivity in the oxidation on an α‐Fe2O3 catalyst. These studies were performed by temperature programmed oxidation (TPO) using a packed bed. For reference purposes, TPO studies in the absence of the catalyst were made as well. The carbon black samples were characterized towards the content of C, H, N and O as well as higher heating value, specific surface area, moisture and volatile matter and were deemed to be suitable model substances for diesel soot of different maturity. The correlation of these physico‐chemical properties with the kinetics in catalytic TPO indicated that the soot oxidation on Fe2O3 is significantly affected by the initial number of surface oxygen compounds of the soot. The decomposition of these surface species causes the formation of active carbon sites, which are supposed to accelerate the soot oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号