首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A process to obtain L ‐valine has been developed using fluidized and packed bed reactors with L ‐aminoacylase (from hog kidney) immobilized by covalent binding. L ‐Valine production using the immobilized derivative of L ‐aminoacylase in fluidized and packed bed reactors was studied at three different substrate concentrations and two different flow rates. Higher productions were obtained in the packed bed reactor in all cases. The different solubilities of L ‐valine and acetyl‐D ‐valine in ethanol were used to purify L ‐amino acid from the reactor effluents. The amount of added ethanol did not influence the separation yields, although the purity of L ‐valine was strongly affected by this parameter. The last step involved was racemization of the unhydrolyzed acetyl‐D ‐valine, which was then used as substrate in a new reaction cycle. © 1999 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Hydrolysis of lactose with β‐D‐galactosidase is one of the most promising biotechnological applications in the food industry because of its use in the production of low lactose milk products and whey hydrolysis. To overcome the problem of enzyme extraction from cells due to the intracellular nature of β‐D‐galactosidase and the poor permeability of the cell membrane to lactose, permeabilization of yeast cells was investigated. Permeabilized whole cells have been claimed to have an advantage over more pure enzyme preparations. In view of the advantages of immobilized cell systems over free cell systems, permeabilized cells were immobilized by an entrapment method in calcium alginate gel. A packed bed reactor together with this immobilized cell system has been used for hydrolysis of milk lactose in a continuous system. RESULTS: Different process parameters (temperature, substrate feed rate, biomass load and time‐course) were optimized to maximize lactose hydrolysis. The immobilized yeast cells (300 mg dry wt) resulted in 87.2% hydrolysis of milk lactose at 30 °C and flow rate 7 mL h?1 in a packed bed reactor system. CONCLUSION: This convenient and relatively inexpensive method of immobilization, resulting in high hydrolysis potential in a continuous system, indicates that permeabilized yeast cells have the potential for the production of low lactose milk and milk products. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
将变色圈法用于筛选高产氨基酰化酶的米曲霉菌株,减少了筛选过程的工作量、缩短了筛选周期。通过实验验证了该方法在筛选高产氨基酰化酶米曲霉菌株时的可行性,并将其用于筛选经紫外线和硫酸二乙酯复合诱变的米曲霉。从突变株中获得了一株高产氨基酰化酶菌株W53,对其生长特性和产酶特性进行了研究。结果表明,米曲霉的氨基酰化酶是生长偶联型,菌体生物量和氨基酰化酶活力同时达到最高;突变株W53和出发菌株W19的产酶过程基本一致;W53拆分N-乙酰-DL-蛋氨酸的酶活力最高可达2569 U/g,比出发菌株W19提高了14.9%。  相似文献   

4.
Highly porous (85% void volume) polymer beads with interconnecting micro‐pores were prepared for the immobilization of Pseudomonas syringae for the degradation of phenol in a fixed‐bed column bioreactor. The internal architecture of this support material (also known as PolyHIPE Polymer) could be controlled through processing before the polymerization stage. The transient and steady state phenol utilization rates were measured as a function of substrate solution flow rate and initial substrate concentration. The spatial concentration of the bacteria on the micro‐porous support particles as well as within them was studied using scanning electron microscopy at various time intervals during the continuous operation of the bioreactor. It was found that although bacterial penetration into the porous support was present after 20 days, bacterial viability however, was compromised after 120 days as a result of the formation of a biofilm on the support particles. The steady state phenol utilization at an initial phenol concentration of 200 mg cm?3 was 100% provided that the flow rate was less than 7 cm3 min?1. Substrate inhibition at a constant flow rate of 4.5 cm3 min?1 was found to begin at 720 mg dm?3. The critical dilution rate for bacteria washout was high as a result of the highly hydrophobic nature of the support and the reduction of pore interconnect size due to bacterial growth within the pores in the vicinity of the surface of the support. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The model enzyme β‐galactosidase was entrapped in chitosan gel beads and tested for hydrolytic activity and its potential for application in a packed‐bed reactor. The chitosan beads had an enzyme entrapment efficiency of 59% and retained 56% of the enzyme activity of the free enzyme. The Michaelis constant (Km) was 0.0086 and 0.011 μmol/mL for the free and immobilized enzymes, respectively. The maximum velocity of the reaction (Vmax) was 285.7 and 55.25 μmol mL?1 min?1 for the free and immobilized enzymes, respectively. In pH stability tests, the immobilized enzyme exhibited a greater range of pH stability and shifted to include a more acidic pH optimum, compared to that of the free enzyme. A 2.54 × 16.51‐cm tubular reactor was constructed to hold 300 mL of chitosan‐immobilized enzyme. A full‐factorial test design was implemented to test the effect of substrate flow (20 and 100 mL/min), concentration (0.0015 and 0.003M), and repeated use of the test bed on efficiency of the system. Parameters were analyzed using repeated‐measures analysis of variance. Flow (p < 0.05) and concentration (p < 0.05) significantly affected substrate conversion, as did the interaction progressing from Run 1 to Run 2 on a bed (p < 0.05). Reactor stability tests indicated that the packed‐bed reactor continued to convert substrate for more than 12 h with a minimal reduction in conversion efficiency. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1294–1299, 2004  相似文献   

6.
The nitrifying component of a micro‐ecological life support system alternative (MELISSA) based on microorganisms and higher plants was studied. The MELISSA system consists of an interconnected loop of bioreactors to allow the recycling of the organic wastes generated in a closed environment. Conversion of ammonia into nitrates in such a system was improved by selection of microorganisms, immobilization techniques, reactor type and operation conditions. An axenic mixed culture of Nitrosomonas europaea and Nitrobacter winogradskyi, immobilized by surface attachment on polystyrene beads, was used for nitrification in packed‐bed reactors at both bench and pilot scale. Hydrodynamics, mass transfer and nitrification capacity of the reactors were analysed. Mixing and mass transfer rate were enhanced by recirculation of the liquid phase and aeration flow‐rate, achieving a liquid flow distribution close to a well‐mixed tank and without oxygen limitation for standard operational conditions of the nitrifying unit. Ammonium conversion ranged from 95 to 100% when the oxygen concentration was maintained above 80% of saturation. The maximum surface removal rates were measured as 1.91 gN‐NH4+ m?2 day?1 at pilot scale and 1.77 gN‐NH4+ m?2 day?1 at bench scale. Successful scale‐up of a packed‐bed bioreactor has been carried out. Good stability and reproducibility were observed for more than 400 days. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Phenol and hexavalent chromium are considered industrial pollutants that pose severe threats to human health and the environment. The two pollutants can be found together in aquatic environments originating from mixed discharges of many industrial processes, or from a single industry discharge. The main objective of this work was to study the feasibility of using phenol as an electron donor for Cr(VI) reduction, thus achieving the simultaneous biological removal/reduction of the two pollutants in a packed‐bed reactor. RESULTS: A pilot‐scale packed‐bed reactor was used to estimate phenol removal with simultaneous Cr(VI) reduction through biological mechanisms, using a new mixed bacterial culture originated from Cr(VI)‐reducing and phenol‐degrading bacteria, operated in draw–fill mode with recirculation. Experiments were performed for feed Cr(VI) concentration of about 5.5 mg L?1, while phenol concentration ranged from 350 to 1500 mg L?1. The maximum reduction/removal rates achieved were 0.062 g Cr(VI) L?1 d?1 and 3.574 g phenol L?1 d?1, for a phenol concentration of 500 mg L?1. CONCLUSION: Phenol removal with simultaneous biological Cr(VI) reduction is feasible in a packed‐bed attached growth bioreactor. Phenol was found to inhibit Cr(VI) reduction, while phenol removal was rather unaffected by Cr(VI) concentration increase. However, the recorded removal rates of phenol and Cr(VI) were found to be much lower than those obtained from previous research, where the two pollutants were examined separately. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
对采用大孔弱碱性阴离子树脂DEAE-D/H为载体制备得到的高活性固定化氨基酰化酶的载体的结构进行了扫描电镜分析,具有这种结构的DEAE-D/H固定化酶活力接近1 400 U/g。采用自制的固定床反应器连续拆分乙酰DL-蛋氨酸,根据对停留时间的测量,在反应器的液体流动为全混流、液体流速低于25 mL/h时,转化率接近100%。固定化酶具有良好的连续操作稳定性和贮藏稳定性。  相似文献   

9.
Using a catalyst support with optimal pore network and pellet structures is critical to the success of an industrial heterogeneous catalyst. This work optimizes the catalyst support of a dry reforming of methane catalyst at packed bed reactor level, that is, effects of concentration and temperature gradients in the reactor are accounted for. Meanwhile, the optimization at reactor level is also compared with that at single catalyst pellet level where fixed concentrations and temperature are imposed on the pellet surface. Results show that the optimal structures obtained at pellet level are similar to these acquired at reactor level, but the improvements in catalyst performance calculated at pellet level are overestimated. Therefore, when designing an industrial catalyst pellet, the preferred structures can be obtained from the optimization at pellet level, but the corresponding improvements in catalyst performance should be evaluated at reactor level to reflect the reality in industry.  相似文献   

10.
Heat transfer between a bed of nickel pellets and a vertical section of electrically heated steel pipe has been measured, with the pellet bed inside the vertical pipe. Most of the data are for a 20.27 cm diameter pipe but some data were also obtained for a 10.23 cm diameter pipe. The effective thermal conductivity of the stationary pellet bed has been estimated approximately from the results of unsteady heating tests. Tests have been carried out with a downwardly moving bed, including the effect of air flowing upwards through the bed. Average values of the pellet‐side heat transfer coefficient are between 72 and 135 W/(m2°C) depending on the mass fluxes of air and pellets, and have been expressed as an empirical correlation.  相似文献   

11.
撞击流—旋转填料床反应器的微观混合性能研究   总被引:10,自引:0,他引:10  
采用化学偶合法 ,对撞击流—旋转填料床反应器内微观混合进行了实验研究 ,得到了转速、喷嘴间距、射流速度及浓度等因素对离集指数Xs的影响规律 ,并对其进行了定性的分析。结果表明撞击流—旋转填料床反应器中微观混合能被极大地强化 ,可成为适合快速反应新型反应设备  相似文献   

12.
废食用油脂固定床酶法合成生物柴油研究   总被引:3,自引:0,他引:3  
利用废食用油脂合成生物柴油,既能够实现废弃物的清洁利用,又能提供可再生的绿色能源。采用固定化假丝酵母脂肪酶为催化剂,在三级固定床反应器内,采用分级流加甲醇的方式,每级醇油摩尔比为1∶1,探讨了酶质量分数、溶剂质量分数、水质量分数、温度、反应液流速等与产物中甲酯质量分数的关系。实验结果表明,当油中酶、溶剂、水的质量分数分别为25%,15%,10%,反应液流速为1.2 mL/min,温度为45℃时,产物中甲酯质量分数达到最大值91.08%,其中油酸甲酯质量分数最高。产品经过精制后,理化性质符合美国和德国生物柴油标准,绝大多数指标优于我国0#柴油。  相似文献   

13.
BACKGROUND: An inexpensive and readily available agroindustrial substrate such as rice bran can be used to produce cheap commercial enzymes by solid‐state fermentation. This work investigates the production of food‐grade proteases by solid‐state fermentation using readily available Thai rice bran. RESULTS: A local strain of Aspergillus oryzae (Ozykat‐1) was used to produce proteases. Rice bran used alone proved to have poor substrate morphology (insufficient porosity) for satisfactory solid‐state fermentation. A certain amount of wheat bran was necessary to improve the morphology of the substrate. The following variables affected protease production: substrate composition, initial moisture content and initial pH. A high protease activity (∼1200 U g−1 dry solids) was obtained on a substrate that had a wheat bran to rice bran ratio of 0.33 by dry weight, a moisture content of 50%, initial pH of 7.5, and incubation temperature of 30 °C. CONCLUSION: Nutritionally, rice bran used alone was as good a substrate as mixed bran for producing protease, but rice bran had poor morphological characteristics for consistent fermentation. A substrate that had a wheat bran to rice bran ratio of 0.33 by dry weight was best for producing protease. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Hexyl laurate has been applied widely in cosmetic industries and is synthesized by chemical methods with problems of cost, environmental pollution, and by‐products. In this study, Lipozyme® IM77 (from Rhizomucor miehei) was used to catalyze the direct‐esterification of hexanol and lauric acid in a solvent‐free system by utilizing a continuous packed‐bed reactor, wherein the aforementioned difficulties could be overcome. Response surface methodology (RSM) and three‐level‐three‐factor Box‐Behnken design were employed to evaluate the effects of synthesis parameters, such as reaction temperature (45–65 °C), mixture flow rate (0.25–0.75 mL min?1) and concentration of lauric acid (100–300 mmol L?1) on the production rate (µmol min?1) of hexyl laurate by direct esterification. RESULTS: The production rate was affected significantly by the mixture flow rate and lauric acid concentration. On the basis of ridge‐max analysis, the optimum synthesis conditions for hexyl laurate were as follows: 81.58 ± 1.76 µmol min?1 at 55 °C, 0.5 mL min?1 flow rate and 0.3 mol L?1 lauric acid. CONCLUSION: The lipase‐catalyzed synthesis of hexyl laurate by Lipozyme® IM‐77 in a continuous packed‐bed bioreactor and solvent‐free system was successfully developed; optimization of the reaction parameters was obtained by Box–Behnken design and RSM. Copyright © 2008 Society of Chemical Industry  相似文献   

15.
The radiation field of a packed‐bed photocatalytic reactor filled with quartz wool coated with titanium dioxide was modeled using the Monte Carlo technique and the following information: the radiation flux emitted by the lamps, the diameter size distribution of the quartz fiber cloth, the mass of quartz fibers and of TiO2 that was immobilized on the fiber surface as well as the refractive index, and the spectral absorption coefficient of the materials of the system. Modeling predictions were validated with radiometer measurements of the transmitted radiation through the reactor, the root mean square error being <9.7%. Finally, by means of a parametric study, the validated model was used to analyze the effect of the design variables, such as the radii of the quartz fibers, thickness of the TiO2 coatings, and amount of TiO2‐coated quartz wool, on the distribution and nonuniformity of the radiative energy distribution inside the reactor. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
17.
Liquid flow behaviors in the packing zone of a rotating packed bed reactor significantly affect the mass transfer performance. However, the interaction between the rotating packing and liquid is still not clear, due to packing's complex structure. In this work, liquid jet impaction on a rotating single-layer wire mesh was investigated to clarify the interaction and liquid flow behaviors after the impaction was observed and analyzed by visualization and simulation methods. Visual experiments showed that the interaction could be divided into the shearing action generated by vertical fibers and carrying action generated by horizontal fibers of wire mesh. A dimensionless number β was introduced as a criterion to evaluate the influence of these actions on the liquid dispersion. Simulation results agreed well with the experimental results of liquid dispersion. Dynamic liquid film behaviors on the fiber surface were further simulated and the average film thickness was 21–32 μm.  相似文献   

18.
19.
A specially conceived packed‐bed stopped flow minireactor (3 mL) suitable for short gas phase catalytic reactions has been used to study the start‐up of ethylene homopolymerization with a supported metallocene catalyst. Focus has been put on the heat transfer characteristics of the supported catalysts and on understanding the relationship between the initial rate and the relative gas/particle velocities and the influence of particle parameters in the packed bed. We performed a comprehensive study on the influence of various physical parameters on the heat transfer regime at start up conditions. The catalyst activity as well as the polymer morphology is shown to be dependent on heat transfer regime. The knowledge thus obtained is applicable to industrial problems like catalyst injection in fluidized beds and helps preventing experimental artifacts due to overheating in following studies. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

20.
Mixing of two immiscible liquids consists of two sections that are liquid-liquid dispersion and mass transfer intraphase or interphase. It plays a crucial role in the liquid-liquid heterogeneous reactions. Here, the liquid-liquid heterogeneous mixing efficiency in RPB reactor is experimentally assessed by a consecutive-competitive chemical probe system. The diameters of dispersed phase droplets in RPB were measured and a correlation to predict the mean diameters were obtained. Based on the dispersed phase size and mass transfer characteristic, a model for predicting the segregation index of liquid-liquid heterogeneous mixing in RPB was established with a deviation <20%. Based on this model, the characteristic time of liquid-liquid heterogeneous mixing in RPB is determined to be in the range of 0.01–1 s. RPB exhibits a great process intensification potential for heterogeneous mixing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号