首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Regulatory controls to limit mercury emissions in waters have impacted on the development of membrane extraction‐based methodologies for its separation. The specific advantages (effective carrier immobilization, easy preparation, versatility, and good mechanical properties) of polymer inclusion membranes (PIMs) make them suitable for this purpose. In this work a novel procedure using PIMs for mercury separation with a commercial available extractant (Cyanex 471X) is described and evaluated through the determination of the efficiency parameters (permeability, selectivity, stability) and membrane characterization. RESULTS: Using a membrane composed of 30% cellulose triacetate (CTA), 60% 2‐nitrophenyl octyl ether (NPOE), and 10% w/w Cyanex 471X a 0.1 mmol dm?3 Hg(II) solution prepared in 0.01 mol dm?3 HCl was transported to a 0.05 mol dm?3 NaCl solution at pH 12.3 with permeability values in the feed and strip phases of 0.25 and 0.15 cm min?1, respectively. A diffusive Fickian‐type mechanism was inferred from the results. High separation factors ranging between 2 and 5900, less than 11% of competing metal ions transported, active transport of the metal ion and a successful reuse of the PIM were achieved. CONCLUSION: Optimized PIMs using Cyanex 471X represent an interesting alternative for Hg(II) removal from waters showing high efficiency factors and easy implementation. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
The extraction equilibrium study of Pt(IV) was carried out with Cyanex 923 and Cyanex 471X in toluene from hydrobromic acid media to investigate their extraction capacity, since they have different donor atoms, ‘O’ and ‘S’. Their distribution equilibria were studied as a function of extractant concentration, diluents, hydrobromic acid concentration and the effect of temperature on extraction. Pt(IV) was quantitatively extracted with 0.1 mol dm?3 Cyanex 923 in toluene from 5.0–8.0 mol dm?3 HBr media and was stripped with 4.0 mol dm?3 perchloric acid. However it was also quantitatively extracted with 0.1 mol dm?3 Cyanex 471X (with 0.1 mol dm?3SnCl2) in toluene from 6.0–8.0 mol dm?3 HBr media and was stripped with 1.0 mol dm?3 stabilized sodium thiosulfate solution at pH 9.0. The slope analysis method indicated metal complex species of 1:1 for Pt(IV) with Cyanex 923 and Cyanex 471X in toluene from HBr media. These methods were successfully applied to the analysis of platinum in real samples. © 2001 Society of Chemical Industry  相似文献   

3.
The extraction of cadmium(II) by Cyanex 923 (a mixture of alkylphosphine oxides) in Solvesso 100 from hydrochloric acid solution has been investigated. The extraction reaction is exothermic. The numerical analysis of metal distribution data suggests the formation of CdCl2.2L, HCdCl3.2L and H2CdCl4.2L (L = ligand) in the organic phase. The results obtained for cadmium(II) distribution have been implemented in a solid‐supported liquid membrane system. The influences of feed phase stirring speed (400–1400 min?1), membrane composition (carrier concentration: 0.06–1 mol dm?3) and metal concentration (0.01–0.08 g dm?3) on cadmium transport have been investigated. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
Liquid–liquid extraction of Ir(III) and Rh(III) with Cyanex 923 from aqueous hydrochloric acid media has been studied. Quantitative extraction of Ir(III) was observed in the range of 5.0–8.0 mol dm?3 HCl with 0.1 mol dm?3 Cyanex 923, while Rh(III) was extracted quantitatively in the range of 1.0–2.0 mol dm?3 HCl with 0.05 mol dm?3 Cyanex 923 in toluene along with 0.2 mol dm?3 SnCl2. The Ir(III) was back extracted with 4.0 mol dm?3 HNO3 quantitatively from the organic phase while Rh(III) was stripped with 3.0 mol dm?3 HNO3. The extraction of Rh(III) with Cyanex 923 was not quantitative without use of SnCl2. However in the extraction of Ir(III) a negative trend was observed in the presence of SnCl2. Varying the temperature of extraction showed that the extraction reactions of both the metal ions are exothermic in nature, and the stoichiometric ratio of Ir(III)/Rh(III) to Cyanex 923 in organic phase was found to be 1:3. The methods developed were applied to the recovery of these metal ions from a synthetic solution of similar composition to that from leaching of spent autocatalysts in 6.0 mol dm?3 HCl. © 2002 Society of Chemical Industry  相似文献   

5.
《分离科学与技术》2012,47(11-12):1161-1174
Abstract

A liquid membrane transport study of Co(II) using di(2-ethylhexyl) phosphoric acid (D2EPHA) as carrier and CCl4, as diluent supported on polypropylene microporous film has been carried out. The carrier concentration in the membrane and HCl concentration in the stripping phase have been varied to see the effect on transport of Co(II) ions across the membrane. Maximum flux and permeability values of 1.23 × 10?5 mol · m?2 · s?1 and 7.66 × 10?11 m2/s, respectively, at a 0.87 mol/dm3 carrier concentration in the membrane have been found. At 1 mol/dm3 HCl concentration in the stripping phase the flux and permeability have maximum values of 1.4 mol · m?2 · s?1 and 5.27 × 10?11 m2/s, respectively. The distribution coefficient of Co(II) ions into organic phase has been found to increase with increasing carrier concentration. The diffusion coefficient determined varies from 13.73 × 10?11 to 0.83 × 10?11 m2/s, which is the reverse order of the values of the distribution coefficient and explains the permeability of the Co(II) D2EPHA complex through the membrane.  相似文献   

6.
《分离科学与技术》2012,47(8-9):1125-1136
Abstract

The transport of (MoO4)2- ions across a tri-n-octylamine (TOA) xylene-based supported liquid membrane has been studied at various HCl concentrations in the feed, TOA concentrations in the membrane, and NaOH concentrations in the strip solution. The distribution coefficient and flux of the Mo(VI) ion species vary with the HCl concentration, indicating that different polymeric species of this metal ion are present in the aqueous solution. A TOA concentration increase of up to 1.308 mol/dm3 enhances flux and permeability of this metal ion, which beyond this concentration is reduced due to an increase in carrier liquid viscosity. An increase in NaOH solution concentration has been found to increase flux and permeability values. The continuous increase in pH of the feed with the transport of metal ions indicates that the (MoO4)2- transport does not involve a decrease or increase in concentration as a result of association of lower to higher or decomposition of higher to lower metal ions polymeric species. The optimum conditions of transport of Mo(VI) metal ions across these membranes have been found to be HCl = 0.01, [NaOH] = 1, and [TOA] = 1.308, furnishing flux and permeability values of the order of 2.49 × 10?4 mol·m?2·s?1 and 2.32 × 10?10 m2·s?1, respectively.  相似文献   

7.
《分离科学与技术》2012,47(15):1293-1316
Abstract

The transport of Zr(IV) through tri-n-butylphosphate-xylene-based liquid membranes, supported in a polypropylene hydrophobic microporous film, has been studied. The concentration of HNO3 in the feed solution and tri-n-butylphosphate (TBP) carrier in the membrane were varied, and the flux and permeability coefficients were determined. The optimum conditions found for maximum flux were determined to be 10 mol/dm3 HNO3 and 2.93 mol/dm3 TBP with a flux value of 12.9 × 10?6 mol · m?2 · s?1. The solvent extraction study revealed that 1.25 to 3.5 protons are involved in zirconium transport, and that two molecules of TBP are involved in the complex formation. The value of protons involved varies with acid concentration. The zirconium ion transport is coupled with nitrate ions transport.  相似文献   

8.
《分离科学与技术》2012,47(9):1413-1419
In this work the selective transport of silver(I) and copper(II) ions from aqueous nitrate(V) solutions by transport through polymer inclusion membrane (PIM) has been studied. The membrane consisted of cellulose triacatate (CTA) as the polymeric support, o-nitrophenyl pentyl ether (ONPPE) as the plasticizer and Cyanex 471X (triisobutylphosphine sulphide) as the ion carrier. Ag(I) ions were effectively removed from the source phase by transport through PIM into 0.01 M Na2S2O3 as the receiving phase. The influence of membrane composition on the transport of silver(I) ions has been evaluated.  相似文献   

9.
This paper investigates the transport of Th(IV) ions in nitric acid media through a supported liquid membrane (SLM) impregnated with di‐2‐ethylhexylphosphoric acid (HDEHP) in kerosene using an electric field. The transport was carried out in a three compartment cell fitted with microporous cellulose nitrate (SLM) and cation exchange membrane (Nafion). The effect of different parameters including nitric acid concentration in the feed solution, HDEHP concentration in the membrane, and HCl concentration were studied. The optimal conditions for Th(IV) transport were 0.1 mol dm?3 HDEHP, 10?3 mol dm?3 HNO3 in the feed solution, 1 mol dm?3 HCl in compartment 2 and 1 mol dm?3 HCl in compartment 3 at 25 °C. Under the optimal conditions of Th(IV) transport the recovery factor after 90 min was 0.25 without applying an electrostatic field, compared with 0.9 when the electric field was applied. The effect of electric current on the flux of Th(IV) through the membrane was also studied. The flux increased as the current density increased from 10 to 30 mA cm?2 to reach a maximum value at 30 mA cm?2 (8 × 10?9 g eq cm?2 s?1). The transport percentages of 0.3 g dm?3 Th(IV) in the presence of 0.1 g dm?3 Eu(III) and 1 g dm?3 U(VI) were 66, 84 and 15%, respectively. The determined selectivities of U(VI)–Th(IV) and Th(IV)–Eu(III) were 0.12 and 0.3, respectively, after 90 min. Therefore, the order of selectivity of this system is Eu(III) > Th(IV) > U(VI). © 2001 Society of Chemical Industry  相似文献   

10.
Germanium transport from a solution containing tartaric acid by a flat sheet supported liquid membrane (FSSLM) using trioctylamine (TOA) as a carrier and polytetrafluoroethylene (PTFE) as a membrane was investigated. A mass transfer model was developed to monitor the transport process based on experimental results. The effect of parameters such as feed solution pH, TOA concentration, initial germanium concentration, and strip hydrochloric acid concentration on the germanium flux and the transport percentage were studied. A high permeation was observed at a feed solution pH of 3.00, 40%v/v TOA and 5 mg/dm3 Ge4+. At HCl concentrations of 1–3 mol/dm3, the germanium transport was complete. Finally, based on the mass transfer model, the aqueous and organic resistance values were 11,802 and 860.85 h/cm, respectively. The validity of the model was investigated by fitting the model and experimental data. The correlation coefficient of 0.99 showed the validity of the model.  相似文献   

11.
《分离科学与技术》2012,47(5):754-764
Selective removal of cadmium from wastewaters is very important, because cadmium is toxic for the environment and for human health. This work is a comprehensive study on the selective removal of Cd(II) from aqueous solutions by using a co-current flow flat sheet supported liquid membrane system. 4.4 × 10?4 M Cd(II) concentration was used as a feed solution in the experiments. Toluene containing Aliquat 336 was used as the membrane liquid in the membrane system. Parameters such as the properties of feed and stripping solutions, carrier concentration, and flow rate, which have roles in transport of Cd(II) ions, were optimized. The efficiency of the system is expressed in terms of permeability and flux values, and transport efficiency. The optimum process conditions for the Cd(II) transport are experimentally found as follows: The feed solution as 2 M HCl, the carrier concentration as 0.1 M Aliquat 336, the stripping solution as 0.06 M EDTA, and the flow rates for the feed and stripping solutions as 50 mL/min and 80 mL/min, respectively. Under these conditions, the Cd(II) transport efficiency is found to be 82%.  相似文献   

12.
The transport of chromium(VI) through a flat‐sheet supported liquid membrane containing Cyanex 921 as a carrier has been investigated. The permeation of the metal is investigated as a function of various experimental variables: hydrodynamic conditions, concentration of chromium(VI) and HCl in the feed phase, carrier concentration and diluent in the membrane and strippant concentration in the stripping phase. The mass transfer coefficient and the thickness of the aqueous boundary layer were calculated from the experimental data. Furthermore, the selectivity of Cyanex 921‐based flat‐sheet supported liquid membrane towards different metal ions and the behaviour of the system against other carriers are presented. Copyright © 2003 Society of Chemical Industry  相似文献   

13.
《分离科学与技术》2012,47(11):969-983
Abstract

A new type of carrier-mediated metal transport through liquid membrane is presented. The system involves redox reactions rather than acid-base reactions which have often been utilized in metal transport systems. Iron ion was selectively transported and concentrated through the membrane via a chloride complex by use of a lipophilic quaternary ammonium ion, methyltrioctylammonium (MTOA, Q+), as a carrier. The two aqueous solutions of different redox potentials were separated by a polymer-supported liquid membrane in which MTOA · chloride (Q+·CI?) was dissolved as the carrier. Iron(III) ion in hydrochloric acid media formed a FeCl4 ? type complex which was readily extracted to the organic membrane phase as an ion-pair complex Q+·FeCl4 ?. On contact with a reducing agent on the other side of the membrane, iron(III) was reduced to iron(II) and liberated into aqueous solution; the chloride complexes of iron(II) are too hydrophilic to stay in the membrane phase. On the other hand, cobalt ion was transported via nitrilotriacetic acid (NTA) complex by MTOA carrier in a similar manner to the iron transport. The nature of the transport reactions was studied under various operational conditions (redox agents, carrier and ligand concentration, pH, coexisting metals, etc.). The extension of these transport reactions to a water-in-oil-in-water type emulsion system as well as to a photoassisted transport system was studied.  相似文献   

14.
The present work describes the mechanism of active transport of copper(II) through an immobilized liquid membrane (ILM) containing LIX 54 (β‐diketone) dissolved in Iberfluid as mobile carrier. An uphill transport model has been described and equations have been derived taking into account aqueous boundary layer diffusion and liquid membrane diffusion as simultaneous controlling factors. In the present model, various cases were discussed using the carrier LIX 54 and different chemical species; the diffusional membrane resistance for lower and higher concentrations of extractant was evaluated. The diffusion coefficients were observed to decrease with increase in ­the extractant concentration, ranging from 4.1 × 10−3 to 1.65 × 10−2 mol dm−3 Plotting [Cu]0−[Cu]t vs time resulted in a slope of [HR]0A/2ΔorgV taking into account the complex species, CuR2, in the membrane. The mass transfer coefficient (Δorg −1), the diffusion coefficient of the metal carrier species (Dorg) and the thickness of the aqueous boundary layer were calculated from the proposed model for LIX 54. More than 90% of the Cu(II) could be separated using LIX 54 in the presence of various metals such as Ni, Co(II) and Zn. © 2000 Society of Chemical Industry  相似文献   

15.
《分离科学与技术》2012,47(8):1113-1118
The selective transport of copper(II), zinc(II), cobalt(II), and nickel(II) ions from nitrate solutions across polymer inclusion membranes (PIMs), which consist of cellulose triacetate as polymeric support, o-nitrophenyl pentyl ether as plasticizer, and 1-alkylimidazole (alkyl from hexyl- to decyl) as ion carrier was reported. PIM was characterized by using atomic force microscopy (AFM) technique. The results show that Cu(II) can be separated very effectively from other transition metal cations as Zn(II), Co(II), and Ni(II) (at a concentration of 10?3 mol/dm3 each). Alkyl substituents at position 1 of the imidazole ring have been found to affect the hydrophobic properties and initial flux of the transported metal ions. The efficiency of separation of metal ions by 1-alkylimidazole followed the sequence: Cu(II) > Zn(II) > Co(II) > Ni(II). The highest selectivity coefficient for Cu(II) was found with 1-hexylimidazole and its 1 mol/dm3 solution in PIM. Separation of the ions was more effective for the nitrates(V) than for chlorides.  相似文献   

16.
A new supported liquid membrane (SLM) system was prepared for the selective transport of bismuth ions from the aqueous feed into the aqueous permeate phase. The support of the SLM was a thin porous polypropylene or polyvinylidene fluoride membrane impregnated with diisooctyldithiophosphinic acid (Cyanex 301) as mobile carrier in 4‐chloroacetophenon as organic solvent. Cyanex 301 acts as a highly selective carrier for the uphill transport of bismuth ions through the SLM. In the presence of HNO3 as a metal ion acceptor in the strip solution, the transport of bismuth ions into the strip side reached 70 % of the initial feed concentration after 3.5 hours. The selectivity and efficiency of bismuth transport from aqueous solutions containing different mixtures of cations were investigated. In the presence of P2O72– ions as suitable masking agent in the feed solution, the interfering effects of other cations were completely eliminated. The selective transport of bismuth through SLM is superior to liquid‐liquid extraction or through bulk liquid membranes. This is due to the high efficiency. The SLM reduces the solvent requirements, combines extraction and stripping operations in a single process and allows the use of highly selective extractants. The system may be applied to samples containing very low bismuth concentrations.  相似文献   

17.
The transport of cadmium (II) from a high-salinity chloride medium across a flat-sheet supported liquid membrane containing Cyanex 923 in Solvesso 100 supported on a PVDF membrane into a strip solution with water was investigated. Permeability coefficients of metal increased with decreasing the pH of feed from 2.0 to 0.5. It also increases with increasing carrier concentration in the membrane phase, whereas the permeation is dependent on the organic phase diluent but independent of metal concentration in the feed phase. The performance of the present system against other carriers was also studied.  相似文献   

18.
The extraction and recovery or stripping of mercury ions from chloride media using microporous hydrophobic hollow fiber supported liquid membranes (HFSLM) has been studied. Tri-n-octylamine (TOA) dissolved in kerosene was used as an extractant. Sodium hydroxide was used as a stripping solution. The transport system was studied as a function of several variables: the concentration of hydrochloric acid in the feed solution, the concentration of TOA in the liquid membrane, the concentration of sodium hydroxide in the stripping solution, the concentration of mercury ions in the feed solution and the flow rates of both feed and stripping solutions. The results indicated that the maximum percentages of the extraction and recovery of mercury ions of 100% and 97% were achieved at the concentration of hydrochloric acid in the feed solution of 0.1 mol/l, the concentration of TOA at 3% v/v, the concentration of sodium hydroxide at 0.5 mol/l and the flow rates of the feed and stripping solutions of 100 ml/min. However, the concentration of mercury ions from 1–100 ppm in the feed solution had no effect on the percentages of extraction and recovery of mercury ions. Thus, these results have identified that the hollow fiber supported liquid membrane process has high efficiency on both the extraction and recovery of mercury (II) ions. Moreover, the mass transfer coefficients of the aqueous phase (k i ) and membrane or organic phase (k m ) were calculated. The mass transfer coefficients of the aqueous phase and organic phase are 0.42 and 1.67 cm/s, respectively. The mass transfer coefficient of the organic phase is higher than that of the aqueous phase. Therefore, the mass transfer controlling step is the diffusion of the mercury ions through the film layer between the feed solution and the liquid membrane.  相似文献   

19.
《分离科学与技术》2012,47(13):1759-1773
Abstract

The permeation rate of Mn(II) from its aqueous sulfate solution through a solid supported liquid membrane containing di(2-ethylhexyl) phosphoric acid (D2EHPA) in kerosene as the mobile carrier has been studied as a function of hydrodynamic conditions, concentrations of Mn2+ (0.91–16.38 mol/m3) and H+ (pH 2.0–5.0) in the feed solution, carrier concentration (10–800 mol/m3) in the membrane, and temperature. It is observed that as the Mn(II) flux approaches a plateau region, the rate of permeation is predominantly controlled by diffusion through the membrane. On the other hand, at low Mn(II) and high H+ ion concentrations, the high diffusivity of the Mn–D2EHPA complex causes the overall permeation rate to be controlled by the interfacial reaction. It is also observed that the rate of Mn(II) permeation is first order with respect to dimer concentration up to 40 mol/m3 and half order above this concentration. Kinetic equations derived on the basis of the proposed mechanism are found to fit the experimental data satisfactorily.  相似文献   

20.
The fundamental aspects of the extraction and stripping of platinum (II) from its chloride solution by Aliquat 336 diluted with toluene have been studied. The extraction and stripping was at 99.5 and 97.6% equilibrium within 30 s and 20 min respectively. The percentage extraction increased slightly with decreasing hydrochloric acid concentration. In 0.1 mol dm?3 hydrochloric acid, 1.0 volume percent Aliquat 336 in toluene could load 9.8 mmol dm?3 of platinum (II). The percentage stripping of platinum (II) from Pt(II)-load organic solvent increased with increasing sodium bisulphite concentration. The enthalpy changes of extraction and of stripping were 12.8 and 114.9 kJ mol?1 respectively. Both of the reactions were endothermic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号