首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: In this study, the capability of low‐cost, renewable and abundant marine biomass Posidonia oceanica (L.) for adsorptive removal of anionic and non‐ionic surfactants from aqueous solutions have been carried out in batch mode. Several experimental key parameters were investigated including exposure time, pH, temperature and initial surfactant concentration. RESULTS: It was found that the highest surfactant adsorption capacities reached at 30 °C were determined as 2.77 mg g?1 for anionic NaDBS and as 1.81 mg g?1 for non‐ionic TX‐100, both at pH 2. The biosorption process was revealed as a thermo‐dependent phenomenon. Equilibrium data were well described by the Langmuir isotherm model, suggesting therefore a homogeneous sorption surface with active sites of similar affinities. The thermodynamic constants of the adsorption process (i.e. ΔG°, ΔH° and ΔS°) were respectively evaluated as ? 8.28 kJ mol?1, 48.07 kJ mol?1 and ? 42.38 J mol?1 K?1 for NaDBS and ? 9.67 kJ mol?1, 95.13 kJ mol?1 and ? 174.09 J mol?1 K?1 for TX‐100. CONCLUSION: Based on this research, valorization of highly available Posidonia oceanica biomass, as biological adsorbent to remove anionic and non‐ionic surfactants, seems to be a promising technique, since the sorption systems studied were found to be favourable, endothermic and spontaneous. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
This work is focused on the removal of Ni(II) from aqueous solutions by sorption onto newly developed magnetite‐loaded calcium alginate particles. The uptake of Ni(II) by these magnetite particles, with their mean geometrical diameter 84 and 508 μm, is best described by the Freundlich isotherm and the constants KF and 1/n were found to be 3.491 mg g?1, 0.731 and 0.793 mg g?1 and 0.907, respectively. The mean sorption energy, as determined by Dubinin‐Radushkevich isotherm for 508‐ and 84‐μm sized particles was evaluated to be 8.9 and 8.0 kJ mol?1, respectively, thus, suggesting the ion‐exchange mechanism for uptake process. Of the various kinetic models proposed, the kinetic Ni(II)‐uptake data were best interpreted by “Simple Elovich” and “Power function” as suggested by their higher regression values. The almost linear nature of plots of log(% sorption) versus log(time) was indicative of intraparticle diffusion. The values of intraparticle diffusion coefficients Kid were found to be 63.49 × 10?2 and 94.35 × 10?2 mg l?1 min0.5. The intraparticle diffusion was also confirmed by Bangham equation. Finally, various thermodynamic parameters were evaluated. The negative ΔG° indicated spontaneous nature of uptake process while positive ΔH° value suggested exothermic nature of the sorption process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
In this study, removal of the cationic dye acridine orange (AO) from aqueous solution using 4A zeolite was studied. The adsorption experiments were performed using batch system, and full factorial design was employed for investigating the condition of removal efficiency of dye. The four most important operating variables were the initial pH of the solution, the concentration of dye, the contact time, and the temperature. The 18 experiments were required to investigate the effect of variables on removal of the dye. The results were statistically analyzed to define important experimental variables and their levels using the analysis of variance (ANOVA). A regression model that considers the significant main and interaction effects was suggested and fitted the experimental data very well. Model predictions were found to be in good agreement (R2 = 99.99%, adjusted R2 = 99.86%) with experimental data. The optimized conditions for dye removal were at initial pH 3.0, 20.0 mg L?1 dye, temperature 298.0 K and 80.0 min adsorption time. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Sips adsorption models. The maximum predicted adsorption capacities for AO was obtained as 29.851 mg g?1. The adsorption thermodynamic parameters, namely ΔH°ads, ΔG°ads and ΔS°ads, were determined. Furthermore, the kinetic of AO adsorption on the 4A zeolite was analyzed using pseudo-first- and second-order kinetic models and the results showed that the removal was mainly a pseudo-second-order process.  相似文献   

4.
The use of fly ash for the removal of victoria blue (C126, 44045) from aqueous solution at different concentrations and pH has been investigated. The process follows first order adsorption rate expression and the rate constant was found to be 1.70 × 10?2 min?1 at a victoria blue concentration of 1.0 × 10?4 M and 25°C. The uptake of victoria blue by fly ash is diffusion controlled and the value of mass transfer coefficient is 1.25 × 10?5 cm sec?1. The equilibrium data fit well in the Langmuir model of adsorption. Maximum removal was noted at pH 8.0. Low desorption of dye from adsorbent surface indicates that the process may not be essentially a reversible one.  相似文献   

5.
ABSTRACT

This study presents the application of fly ash from brown coal and biomass burning power plant as a sorbent for the removal of boron ions from an aqueous solution. The adsorption process efficiency depended on the parameters, such as adsorbent dosage, pH, temperature, agitation time and initial boron concentration. The experimental data fitted well with the Freundlich isotherm model and the maximum capacity was found to be 16.14 mg g?1. The adsorption kinetics followed the pseudo-second-order model. Also, the intra-particle diffusion model parameters were calculated. Thermodynamic parameters such as change in free energy (ΔG°), enthalpy (ΔH°), entropy (ΔS°) revealed on exothermic nature of boron adsorption onto the fly ash.  相似文献   

6.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

7.
Kinetic studies on the removal of phosphate by adsorption onto oyster shell powder have been investigated at 24 °C. The results showed that the equilibrium occurred in 10 min and the equilibrium data followed the Freundlich isotherm. Freundlich constants were found to be kf, 1.4 × 10?2, and n, 0.71. The phosphate removal was not influenced by pH over the range 5.0–10.5. Continuous agitation studies at 24 °C and 530 rpm reached equilibrium after 7.7 days, when 24 g dm?3 of oyster shell powder reduced the phosphate concentration from 50 to 7.0 mg dm?3. The Lagergren rate constant for the slow adsorption process was observed to be 3.81 × 10?4 dm3 min?1. Comparison with calcium carbonate, GR grade, showed that oyster shell powder and CaCO3 behave more or less in the same way. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
《分离科学与技术》2012,47(1):105-115
In the present study for the purpose of removal of boron from water by adsorption using adsorbents like fly ash, natural zeolite, and demineralized lignite was investigated. Boron in water was removed with fly ash, zeolite, and demineralized lignite with different capacities. Ninety-four percent boron was removed using fly ash. Batch experiments were conducted to test the removal capacity, to obtain adsorption isotherms, thermodynamic and kinetic parameters. Boron removal by all adsorbents was affected by pH of solution; maximum adsorption was achieved at pH 10. Adsorption of boron on fly ash was investigated by the Langmuir, Freundlich, and the Dubinin-Radushkevich models. Standard entropy and enthalpy changes of adsorption of boron on fly ash were, ΔS 0  = ?0.69 kJ/mol K and ΔH 0  = ?215.34 kJ/mol, respectively. The negative value of ΔS 0 indicated decreased randomness at the solid/solution interface during the adsorption boron on the fly ash sample. Negative values of ΔH 0 showed the exothermic nature of the process. The negative values of ΔG 0 implied that the adsorption of boron on fly ash samples was spontaneous. Adsorption of boron on fly ash occurred with a pseudo-second order kinetic model, and intraparticle diffusion of boron species had also some effect in adsorption kinetics.  相似文献   

9.
《分离科学与技术》2012,47(3):681-711
Abstract

A timber industry waste was transformed to activated carbon by a one-step chemical activation process using H3PO4 (H). The used activated carbon (SDH) was characterized by N2 adsorption, FTIR, density, pH, point of zero charge pHpzc, moisture and ash content. Methylene blue (MB) and the iodine number were calculated by adsorption from the solution. The applicability of the different activated carbon produced was carried out to treatment of aqueous waste contaminated with iodine-labeled prolactin (I-PRL) Treatment processes were performed under the varying conditions; contact time, temperature, carbon type, carbon dosage, and different particle size of the activated carbon (SDH). The results indicated that 5 hours are sufficient to reach a plateau, and the amount of I-PRL adsorbed on SDH activated carbons increase with the solution temperature with thermodynamic parameter of ΔG° = ?7.962 (kJ/mol), ΔH° = 28.869 (kJ/mol) and ΔS° = 109.94 (J/mol K). The optimum adsorption results were reached using carbon dose of 0.1 gm with particle size of <0.25 mm, and a batch factor (V/M) of 7.14 mlg?1. First- and second-order equations, intraparticle diffusion equation, and the Elovich equation have been used to test experimental data. The experimental data was found to fit the second-order model and a chemisorptions mechanism. 0.7 M NaOH can be used for regeneration of spent SDH activated carbon with the efficiency of 99.6% and the regenerated carbon can be reused for five cycles effectively.  相似文献   

10.
The most commonly applied methods for the treatment of used adsorbents is to recover them in acid/alkaline medium or direct enflame them. This work dealt with a new potential and economic method to utilize a waste adsorbent. Poly(AAc/AM/SH) superabsorbent hydrogels have proved to be a good adsorbent for Cu2+ ions and after adsorption the hydrogels were recovered in acid medium. In this report, the Cu2+ ion adsorbed hydrogel has not undergone any regeneration process and applied directly to phosphate ion adsorption. The Cu2+ ions‐loaded poly(AAc/AM/SH) hydrogels, were stable within a wide pH range and suitable for phosphate ion adsorption. The factors affecting the phosphate adsorption, such as pH, ionic strength, contact time, temperature, initial concentration of the phosphate ion, and coexisting ions were systematically investigated. The phosphate adsorption was highly pH dependent; and the maximum adsorption of 87.62 mg/g was achieved at pH 6.1. The adsorption data fitted the Langmuir adsorption isotherm better than the Freundlich isotherm. The concomitant anions show profounder adverse influence on phosphate ion adsorption of poly(AAc/AM/SH)‐Cu hydrogel and the effect follows the order citrate > sulfate > bicarbonate > chloride > nitrate. The thermodynamic parameters including ΔH°, ΔG°, and ΔS° for the adsorption processes of phosphate ions on the gel were also evaluated, and the negative ΔG° and ΔH° confirmed that the adsorption process was spontaneous and exothermic. The adsorption kinetic results suggest that the adsorption process was well described by the pseudo second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
12.
《分离科学与技术》2012,47(3):507-517
The adsorption characteristics of Pb2+ on pre-boiled treated onion skins (PTOS) and formaldehyde-treated onion skins (FTOS) were evaluated. The effects of Pb2+ initial concentration, agitation rate, solution pH, and temperature on Pb2+ adsorption were investigated in batch systems. Pb2+ adsorption was found to increase with increase in initial concentration. The point of zero net charge (PZC) was 6.53. The optimum pH for the maximum removal of Pb2+ was 6.0. The adsorption equilibrium data was best represented by the Langmuir isotherm model for FTOS and the Freundlich isotherm model for PTOS. The maximum amounts of Pb2+ adsorbed (qm), as evaluated by the Langmuir isotherm, was 200 mgg?1 for FTOS. The efficiencies of PTOS and FTOS for Pb2+ removal were 84,8.0% and 93.5% at 0.15 g/200 mL?1 adsorbent dose, respectively. (C 0 = 50 mg L?1). Study concluded that onion skins, a waste material, have good potential as an adsorbent to remove toxic metals like Pb2+ from water. Boehm titration analysis was conducted to determine the surface groups. It was found that the adsorption kinetics of Pb2+ obeyed pseudo-first-order kinetic model as based on Δq (%) values. FTIR and SEM images before and after adsorption was recorded to explore changes in adsorbent-surface morphology. Activation energy (Ea) was obtained as 25.596 kJ/mol.  相似文献   

13.
Modified chitosan beads (CB) were prepared and used for the removal of Fe(III) ions from aqueous solution. The advantages of modified CB than raw CB have been explored. The sorption capacity (SC) of the modified forms of CB namely, protonated CB, carboxylated CB, and grafted CB were found to be 3533, 3905, and 4203 mg kg?1, respectively, while the raw CB showed the SC of 2913 mg kg?1 only. Batch adsorption studies were conducted to optimize various equilibrating conditions like contact time, pH, and coions. The sorbents were characterized by FTIR, WDXRF, and SEM with EDAX analysis. The sorption process has been explained with Freundlich and Langmuir isotherms. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were calculated to understand the nature of sorption. Modified CB are more selective for Fe(III) than Cu(II), which inturn higher than Cr(VI). A suitable mechanism for iron sorption onto modified CB was established. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
《分离科学与技术》2012,47(17):2688-2699
Raw and modified biomasses prepared from Padina sp. algae have been used as sorbent for the removal of lead and cadmium from single and binary aqueous solutions. The effects of chemical pretreatment, exposure time, initial solution pH, initial metal concentration, and temperature on the metal uptake by the algae were investigated. It was observed that initial solution pH considerably influenced Pb and Cd uptake. The maximum removal occurred at initial pH of 5.0 for lead and 6.0 for cadmium. Also, alkali modified biomass has been shown to have a high uptake capacity for both lead and cadmium. The kinetic and equilibrium experimental data fitting tested with various models. The pseudo-first-order kinetic model and Langmuir isotherm provided the best correlation of the kinetic and equilibrium experimental data, respectively. The maximum uptake estimated from the Langmuir isotherm was 264 mg g?1 for lead and 164 mg g?1 for cadmium ions. Experimental biosorption data in binary system were well described by the extended Langmuir model. Various thermodynamic parameters, such as ΔG°, ΔH°, and ΔS° were calculated.  相似文献   

15.
《分离科学与技术》2012,47(10):1592-1603
The adsorption of Clofibric acid, one of the most frequently prescribed high environmental risk drugs, was studied using H3PO4 activated Schumannianthus dichotomus (ASD). The chemical characteristics of the adsorbent were established by Bohem’s titration, pHPZC, FTIR, SEM, XRD, porosity, and surface area analysis. It was observed that the adsorbent was microporous-mesoporous in nature with BET surface area of 1199.98 m2.g?1. The influence of temperature (303-323 K), pH (2-10), textural properties, adsorbent load, and contact time was studied. The Langmuir equation was found to best represent the equilibrium data for clofibric acid-adsorbent system, yielding monolayer adsorption capacity of 258.39 mg.g?1 at 303 K. The pseudo-second order model best explained (R2 > 0.999) the adsorption kinetics with rate constant 0.037 g.mg?1min?1. The thermodynamics parameters, ΔG°, ΔH°, and ΔS°, evaluated as ?8.14 kJmol?1, ?34.07 kJmol?1, and ?85.5 JK?1mol?1, respectively, revealed that the adsorption process is feasible, spontaneous, and exothermic in nature. In the column mode, the adsorption capacity of ASD (267.93 mg.g?1) was found to be higher than the batch mode of operation (258.39 mg.g?1). The cost incurred per kg of the developed adsorbent was USD 14.36.  相似文献   

16.
Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles   总被引:1,自引:0,他引:1  
Due to rapid industrialisation, the presence of heavy metals in water and wastewater is a matter of environmental concern. Though some of the metals are essential for our system but if present beyond their threshold limit value (TLV), they are harmful and their treatment prior to disposal becomes inevitable. The present communication has been addressed to the removal of Cr(VI) from aqueous solutions by nanoparticles of iron. Nanoparticles of iron were prepared by sol–gel method. The characterisation of the nanoparticles was carried out by XRD and TEM analysis. Batch experiments were adopted for the adsorption of Cr(VI) from its solutions. The effect of different important parameters such as contact time and initial concentration, pH, adsorbent dose, and temperature on removal of chromium was studied. The removal of chromium increased from 88. 5% to 99.05% by decreasing its initial concentration from 15 to 5 mg L?1 at optimum conditions. Removal of Cr(VI) was found to be highly pH dependent and a maximum removal (100%) was obtained at pH 2.0. The process of removal was governed by first and pseudo‐second‐order kinetic equations and their rate constants were determined. The process of removal was also governed by intraparticle diffusion. Values of the thermodynamic parameters viz. ΔG°, ΔH°, and ΔS° at different temperatures were determined. The data generated in this study can be used to design treatment plants for chromium rich industrial effluents. Adsorption results indicate that nanoiron particles can be effective for the removal of chromium from aqueous solutions.  相似文献   

17.
BACKGROUND: This research describes the adsorption of copper ions from aqueous solutions following the modification of rubber (Hevea brasiliensis) leaves with formaldehyde solution. The main objectives of this research were to identify the binding mechanisms of copper ions on the chemically modified rubber leaves by spectroscopic techniques and to investigate the effects of several important physicochemical parameters such as pH, copper concentration, contact time, adsorbent dose and temperature on copper removal. RESULTS: Based on a kinetic study, the pseudo‐second‐order model was found to fit the experimental results well, while the Boyd kinetic model indicated that the rate‐determining step was due to film diffusion. Adsorption isotherms were modelled by the Langmuir and Freundlich isotherm equations, with the former providing a better fit for the data. Based on the Langmuir model, the maximum adsorption capacities of Cu(II) ions at 300, 310 and 320 K were 8.36, 8.61 and 8.71 mg g?1, respectively. Thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy changes (ΔS°) were calculated. The adsorption process was spontaneous as the values of ΔG° were negative, and endothermic as higher adsorption capacities were recorded at higher temperatures. More than 80% of copper ions bound on the adsorbent were able to be desorbed using 0.02 mol L?1 HCl, HNO3 and EDTA solutions. Besides ion exchange, surface complexation could also play a major role in copper binding. CONCLUSION: Due to its relative abundance and satisfactory adsorption capacity, the modified rubber leaves can be considered as a good low‐cost adsorbent for removing copper ions from dilute aqueous solutions. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
In this study, the competitive separation of lead, cadmium, and nickel ions from aqueous solutions using a commercial activated carbon (AC) has been investigated and optimized using response surface methodology (RSM). The optimal conditions to reach the highest adsorption capacity for these metals were found as follows: initial pH = 6.3, temperature = 56.8°C, and shaking speed = 308 rpm. Under these conditions, the sequence of adsorption capacity toward the metal ions was as follows: Pb (II): 9.44 mg g?1 > Cd (II): 9.37 mg g?1 > Ni (II): 4.52 mg g?1. The effect of shaking speed on the adsorption capacity of AC was higher than the effects of the initial pH and temperature, indicating the more important role of physisorption than chemisorption in the adsorption of these metal ions. This was confirmed by the results of thermodynamic studies. The equilibrium adsorption data were fitted to the Freundlich, Langmuir adsorption isotherm models and the Dubinin–Radushkevich model parameters were evaluated. All the models were tested and all were shown to represent the experimental data satisfactorily. The thermodynamic parameters such as ΔH, ΔS, and ΔG were computed from the experimental data. These values show that the adsorption is endothermic and spontaneous. The positive value of ΔS° indicates increasing of randomness at the solid/liquid interface during the adsorption of metal ions on AC.  相似文献   

19.
20.
A novel chelating resin with functional group containing S and N atoms was prepared using chloromethylated polystyrene and 2,5‐dimercapto‐1,3,4‐thiodiazole (also called bismuththiol I, BMT) as materials. Its structure was characterized by infrared spectra and elementary analysis. The results showed that the content of the functional group was 2.07 mmol BMT g?1 resin, 47% of which were in the form of monosubstitution (PS‐BMT‐1) and 53% in the form of double substitution (PS‐BMT‐2). The adsorption for mercury ion was investigated. The adsorption dynamics showed that the adsorption was controlled by liquid film diffusion. Increasing the temperature was beneficial to adsorption. The Langmuir model was much better than the Freundlich model to describe the isothermal process. The adsorption activation energy (Ea), ΔG, ΔH, and ΔS values calculated were 18.56 kJ·mol?1, ‐5.99 kJ·mol?1, 16.38 kJ·mol?1, and 37.36, J·mol?1·K?1, respectively. The chelating resin could be easily regenerated by 2% thiourea in 0.1 mol·L?1 HCl with higher effectiveness. Five adsorption–desorption cycles demonstrated that this resin was suitable for repeated use without considerable change in adsorption capacity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1646–1652, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号