首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
We present a new theory on scattering of radiation by real fibers in engineering systems. The theory covers the scattering by fibers consistently over an entire range of fiber sizes from smaller to larger than the wavelength of radiation. A geometrical technique is presented for modeling a fiber with a rough surface of a three-dimensional homogeneous microstructure. Scattering characteristics of the fiber are described based on the electromagnetic wave theory of diffraction to investigate the relationship among three main factors of scattering: wavelength of radiation, fiber diameter, and fiber microstructure. With an increase in fiber diameter and a corresponding magnification of a rough fiber surface microstructure, the scattering changes from particle scattering to surface scattering. The transition occurs in a size parameter range of P = 100–300. © 1999 Scripta Technica, Heat Trans Asian Res, 28(4): 322–335, 1999  相似文献   

2.
The thermal and radiative environment of human life space is characterized strongly by solar radiation and by the radiation from surrounding walls as well as by air temperature and humidity. To consider the environmental radiation quantitatively, absorptance spectra and total emittance of the surfaces should be measured properly. In this work we measure spectra of normal incidence absorptance of such surfaces in a near‐ultraviolet through infrared region of wavelength of 0.30–11 μm. On the basis of measured spectra we evaluate solar absorptance of the surfaces to respond to the needs of radiation characteristics of the surfaces in the fields of architecture, life science, and solar engineering. Objective surfaces of the measurement are surfaces of indoor and outdoor environments: cloths, indoor wall materials, painted surfaces, ceramics, bricks, outdoor wall materials, road materials, leaves, etc. We also observe the transition of the absorptance spectra of a water–wet cement surface in a drying process. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20356  相似文献   

3.
Modelling of solar energy systems requires estimation of the hourly radiation incident on surfaces of different tilts and orientations. Most meteorological stations report radiation values on a daily rather than hourly basis. Again, the value of the diffuse component may or may not be reported. Hence, different strategies may be encountered, for each location, with the common goal of computing hourly radiation on inclined surfaces.

In this study, five different schemes are presented to achieve this goal. In each scheme, certain correlations are required which are discussed in detail. The study is divided into five sections, each dealing with a specific type of correlation. These sections are: (i) correlations between daily diffuse and global radiation; (ii) correlations between hourly/daily global radiation; (iii) correlations between hourly/daily diffuse radiation; (iv) correlations between hourly diffuse and global radiation; and (v) models for computing diffuse sky radiation on inclined surfaces. The last section deals extensively with the anisotropic nature of sky diffuse radiation.

The important aspects of all correlation studies are highlighted, and the relative merits and demerits of their results are brought to light.

Mathematical expressions, where available, for models/correlations are provided so that the reader will have access to a comprehensive study. This information should be useful for modelling purposes in which computation of radiation on surfaces of different orientations and tilts is required.  相似文献   


4.
In the latter years the title problem has been examined in a large number of research papers. The present Note emphasizes, however, that the effect of thermal radiation in the linearized Rosseland approximation is quite trivial, both physically and computationally. Namely, it always reduces to a simple rescaling of the Prandtl number by a factor involving the radiation parameter. This implies that a comprehensive study of the Prandtl-number dependence without thermal radiation effects represents per se a detailed study of the radiation effects, too. In other words, the solution of the radiation problem for optically thick media in the linearized Rosseland approximation does not require any additional numerical or analytical effort compared to the same problem without radiation, making in this respect dozens of papers superfluous.  相似文献   

5.
The thermal contact resistance (TCR) is the main component of proton exchange membrane fuel cell (PEMFC) thermal resistance due to the existence of surface roughness between the components of PEMFC, and the influence of TCR is often ignored in traditional three dimensional PEMFC simulations. In this paper, the heat and mass transfer characteristics including polarization curve, power density curve, temperature distribution, membrane water content distribution, membrane current density are studied under different component surface roughness conditions, and finally the effect of each TCR on the PEMFC performance is studied. It is found that under the same operating conditions, the TCR makes the radial heat transfer of the PEMFC decrease, and the temperature of the membrane electrode and the temperature difference of each component of the PEMFC is higher than that of the model without TCR. When the surface roughness of components in the PEMFC equals 1 μm, 2 μm, 3 μm, the cell current density decreases by 6.56%, 12.46% and 17.17% respectively when the output cell voltage equals 0.3 V, and the cell power density decreases by 3.64%, 7.54%, 13.14% respectively when the cell current density equals 1.2 A·cm?2. When the TCR between the CL and PEM equals 0.003 K·m2·W?1, 0.005 K·m2·W?1, 0.01 K·m2·W?1, the cell current density is increased by 2.30%, 3.65%, 6.74% respectively under the condition that the output cell voltage equals 0.3 V, and the cell power density is increased by 1.24%, 1.85%, 3.10% respectively when the cell current density equals 1.2 A·cm?2. The results show that the numerical simulation of PEMFC cannot ignore the effect of TCR.  相似文献   

6.
The present analysis addresses linear and nonlinear radiation effects in hydrodynamic viscous Maxwell fluid flow on a unidirectional stretching surface through viscous dissipation. The relaxation effect is considered in the mathematical model, which elucidates mass transport mechanisms under binary chemical reaction and activation energy. Mathematical modeling contains nonlinear partial differential equations using boundary conditions. Appropriate transformations convert the partial differential equations into ordinary differential equations. Numerical solutions for regular differential equations are brought by Runge–Kutta–Fehlberg numerical quadrature and a shooting method with a tolerance level of 10−9. The influence of physical variables, such as Deborah relaxation number, rotation parameter, Biot number, activation energy parameter, reaction rate parameter, Eckert number, and Prandtl number are investigated. Increasing the Biot number improves the temperature region in the boundary layer. With high rotation, the increasing Deborah number enhances the fluid temperature substantially throughout the boundary layer.  相似文献   

7.
The effect of geometrical parameters on water flow and heat transfer characteristics in microchannels is numerically investigated for Reynolds number range of 100–1000. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method. The computational domain is taken as the entire heat sink including the inlet/outlet ports, wall plenums, and microchannels. Three different shapes of microchannel heat sinks are investigated in this study which are rectangular, trapezoidal, and triangular. The water flow field and heat transfer phenomena inside each shape of heated microchannels are examined with three different geometrical dimensions. Using the averaged fluid temperature and heat transfer coefficient in each shape of the heat sink to quantify the fluid flow and temperature distributions, it is found that better uniformities in heat transfer coefficient and temperature can be obtained in heat sinks having the smallest hydraulic diameter. It is also inferred that the heat sink having the smallest hydraulic diameter has better performance in terms of pressure drop and friction factor among other heat sinks studied.  相似文献   

8.
The effects of pressure work and radiation on natural convection flow around a sphere in presence of heat generation have been investigated in this paper. The governing equations are transformed into dimensionless non-similar equations by using set of suitable transformations and solved numerically by the finite difference method along with Newton's linearization approximation. Attention has been focused on the evaluation of shear stress in terms of local skin friction and rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles. Numerical results have been shown graphically and also in tabular form for some selected values of parameter set consisting of heat generation parameter Q, radiation parameter Rd, pressure work parameter Ge and the Prandtl number Pr.  相似文献   

9.
The current study aims to investigate the influence of porosity in the presence of radiation, and viscous dissipation on two-dimensional unsteady magnetohydrodynamics mixed convection heat and mass transfer flow at the stagnation point. The governing time-dependent nonlinear partial differential equations are converted into a nonlinear ordinary differential equation by utilizing similarity transformations. The transformed equations are solved by employing the bvp4c technique, a well-known numerical approach. The influence of nondimensional factors on fluid velocity, temperature, and species concentration profiles is explored and graphically represented. For varied values of the Prandtl number, magnetic field, and Schmidt number, the friction factor, Nusselt, and Sherwood numbers are also explored and provided in tabular format. As increasing the porosity parameter, the temperature profile, concentration profile is growing, and velocity profile diminishes. The conclusions of this study are widely accepted by the scientific community.  相似文献   

10.
In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide , alumina oxide (), and iron oxide . The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters.  相似文献   

11.
The present article investigates the influence of Joule heating and chemical reaction on magneto Casson nanofluid phenomena in the occurrence of thermal radiation through a porous inclined stretching sheet. Consideration is extended to heat absorption/generation and viscous dissipation. The governing partial differential equations were transformed into nonlinear ordinary differential equations and numerically solved using the Implicit Finite Difference technique. The article analyses the effect of various physical flow parameters on velocity, heat, and mass transfer distributions. For the various involved parameters, the graphical and numerical outcomes are established. The analysis reveals that the enhancement of the radiation parameter increases the temperature and the chemical reaction parameter decreases the concentration profile. The empirical data presented were compared with previously published findings.  相似文献   

12.
Our study intends to examine the combined effects of radiation, magnetic field, and chemical reaction on the peristaltic flow of a non-Newtonian fluid containing gyrotactic microorganisms and nanoparticles. The system of our equations is understood numerically by using the Rung-Kutta-Merson method with Newton iteration in a shooting and matching procedure. The effect of physical implanted parameters is represented and discussed through a lot of charts for velocity, temperature, nanoparticle concentration, the density of motile microorganisms. From this discussion, we notice that the motile microorganisms profile is affected by the arising with the Brownian motion parameter and radiation parameter but the thermophoresis parameter, traditional Lewis number, and bioconvection of Peclet number are decremented the motile microorganisms profile.  相似文献   

13.
Accurate prediction of ribbed duct flow and heat transfer is of importance to the gas turbine industry. In the present work, a computer code has been developed to study the turbulent heat transfer and friction in a square duct with various-shaped ribs mounted on one wall. The simulations were performed for four rib shapes, i.e., square, triangular, trapezoidal with decreasing height in the flow direction, and trapezoidal with increasing height in the flow direction. The prepared algorithm and the computer code are applied to demonstrate distribution of the heat transfer coefficient between a pair of ribs. The results show that features of the inter-rib distribution of the heat transfer coefficient are strongly affected by the rib shape and trapezoidal ribs with decreasing height in the flow direction provide higher heat transfer enhancement and pressure drop than other shapes.  相似文献   

14.
As part of our research, we investigate the analysis influence of radiation on heat and mass transfer free convection of micropolar MHD fluids over a stretched porosity sheet involving suction and injection. The governing energy, rotational momentum, and concentration and momentum partial differential equations are transformed into ordinary differential equation ones via a similarity transformation. This system of equations is then solved by using MATLAB's built-in solver. The Sherwood numbers, Nusselt, friction factor, wall couple shear stress, and dimensionless profiles are all influenced by the various physical parameters of the flow. When the material parameter is increased, velocity rises but decreases when the magnetic parameter and surface condition factor are increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号