首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the adaptive attitude control of spacecraft with time-varying inertial properties. We use a coordinate independent approach for the purpose of designing the control and estimation laws in terms of the rotation matrices representing the spacecraft body frame and reference tracking signals. This method helps to overcome the difficulties regarding the attitude representation on SO(3) such as ambiguities associated with quaternion representation and inherent singularities inside Euler parameters. We model the time variations in inertial parameters in two different ways, and design adaptive control schemes for each case. As the first uncertain dynamic model, we consider a setting of spacecraft with multiple moving appendages, and based on this model, design an adaptive control scheme with three different versions, where Frobenious norm is used in measuring the deviation of the estimated inertia tensors from their actual values. The proposed adaptive control scheme is later extended for the more direct model where the inertia tensor of the spacecraft has a nonlinear relation with the norm of the input moment. Further, we derive the allowable sets of initial conditions to ensure the convergence of the tracking error. Simulation results are provided to illustrate the effectiveness of our proposed approach.  相似文献   

2.
In this paper, a robust and optimal attitude control design that uses the Euler angles and angular velocities feedback is presented for regulation of spacecraft with disturbances. In the control design, it is assumed that the disturbance signal has the information of the system state. In addition, it is assumed that the disturbance signal tries to maximise the same performance index that the control input tries to minimise. After proposing a robust attitude control law that can stabilise the complete attitude motion of spacecraft with disturbances, the optimal attitude control problem of spacecraft is formulated as the optimal game-theoretic problem. Then it is shown that the proposed robust attitude control law is the optimal solution of the optimal game-theoretic problem. The stability of the closed-loop system for the proposed robust and optimal control law is proven by the LaSalle invariance principle. The theoretical results presented in this paper are illustrated by a numerical example.  相似文献   

3.
This paper investigates the control problem of finite‐time attitude synchronization and tracking for a group of rigid spacecraft in the presence of environmental disturbances. A new fast terminal sliding manifold is developed for multiple spacecraft formation flying under the undirected graph topology. On the basis of the finite‐time control and adaptive control strategies, two novel decentralized finite‐time control laws are proposed to force the spacecraft attitude error dynamics to converge to small regions in finite time, and adaptive control is applied to reject the disturbance. The finite‐time convergence and stability of the closed‐loop system can be guaranteed by Lyapunov theory. Simulation examples are provided to illustrate the feasibility of the control algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper proposes two robust inverse optimal control schemes for spacecraft with coupled translation and attitude dynamics in the presence of external disturbances. For the first controller, an inverse optimal control law is designed based on Sontag-type formula and the control Lyapunov function. Then a robust inverse optimal position and attitude controller is designed by using a new second-order integral sliding mode control method to combine a sliding mode control with the derived inverse optimal control. The global asymptotic stability of the proposed control law is proved by using the second method of Lyapunov. For the other control law, a nonlinear H inverse optimal controller for spacecraft position and attitude tracking motion is developed to achieve the design conditions of controller gains that the control law becomes suboptimal H state feedback control. The ultimate boundedness of system state is proved by using the Lyapunov stability theory. Both developed robust inverse optimal controllers can minimise a performance index and ensure the stability of the closed-loop system and external disturbance attenuation. An example of position and attitude tracking manoeuvres is presented and simulation results are included to show the performance of the proposed controllers.  相似文献   

5.
In this paper, we develop a global set stabilization method for the attitude control problem of spacecraft system based on quaternion. The control law that uses both optimal control and finite‐time control techniques can globally stabilize the attitude of spacecraft system to a set of equilibria. First, for the kinematic subsystem, we design a virtual optimal angular velocity. To obtain the global minimum of the performance index, this optimal angular velocity is only discontinuous in initial values. It can be regarded as a combination of open loop control and closed loop control. Then for the dynamic subsystem, we design a finite‐time control law that can force the angular velocity to track the virtual optimal angular velocity. It is proved that the closed loop system satisfies global set stability in the absence of disturbances. In the presence of disturbances, the system trajectory will converge to a neighborhood of the equilibrium set. Rigorous analysis shows that by introducing finite‐time control techniques, the closed loop system possesses a better disturbance rejection property. The control method is more natural and energy‐efficient. The effectiveness of the proposed method is demonstrated by simulation results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
带有两个动量飞轮刚体航天器的姿态非完整运动规划问题   总被引:8,自引:1,他引:8  
航天器利用三个动量飞轮可以控制其姿态和任意定位.当其中一个动量飞轮失效,在某些特定的情况下,如何控制航天器的姿态问题还没有有效的方法.利用最优控制方法研究了带有两个动量飞轮的刚体航天器姿态优化控制问题.为此考虑系统角动量为零的情况下,将航天器姿态运动方程化为非完整形式约束方程,系统的控制问题可转化为无漂移系统的非完整运动规划问题.通过Ritz近似理论得到求解带有两个动量飞轮航天器姿态的运动规划控制算法.通过数值仿真,表明该方法对航天器姿态运动规划控制是有效的.  相似文献   

7.
The problem of finite-time attitude synchronisation and tracking for a group of rigid spacecraft nonlinear dynamics is investigated in this paper. First of all, in the presence of environmental disturbance, a novel decentralised control law is proposed to ensure that the spacecraft attitude error dynamics can converge to the sliding surface in finite time; then the final practical finite-time stability of the attitude error dynamics can be guaranteed in small regions. Furthermore, a modified finite-time control law is proposed to address the control chattering. The control law can guarantee a group of spacecraft to attain desired time-varying attitude and angular velocity while maintaining attitude synchronisation with other spacecraft in the formation. Simulation examples are provided to illustrate the feasibility of the control algorithm presented in this paper.  相似文献   

8.
使用Chebyshev-Gauss(CG)伪谱法研究带动量轮和推力器的欠驱动航天器姿态最优控制问题.基于欧拉姿态角和动量矩定理导出两类航天器姿态运动模型,采用Clenshaw-Curtis积分近似得到性能指标函数中的积分项,应用重心拉格朗日插值逼近状态变量和控制变量,将连续最优控制问题离散为具有代数约束的非线性规划(NLP)问题,通过序列二次规划(SQP)算法求解.数值仿真结果表明,对两类欠驱动航天器的姿态机动最优控制均能达到设计控制要求,得到的姿态最优曲线与验证得到的曲线几乎完全重叠.  相似文献   

9.
It is a well-known fact that a symmetric spacecraft with two control torques supplied by gas jet actuators is not controllable, if the two control torques are along axes that span the two-dimensional plane orthogonal to the axis of symmetry. However, feedback control laws can be derived for a restricted problem corresponding to attitude stabilization about the symmetry axis. In this configuration, the final state of the system is a uniform revolute motion about the symmetry axis. The purpose of this paper is to present a new methodology for constructing feedback control laws for this problem, based on a new formulation for the attitude kinematics.  相似文献   

10.
The spacecraft rendezvous problem with the target spacecraft on an arbitrary elliptical orbit is addressed using adaptive backstepping control. The relative motion of two spacecrafts is established based on the Lawden equations. In order to take the parametric uncertainties into consideration, an adaptive backstepping controller is proposed in this paper, which is optimal with respect to a family of cost functionals. With Lyapunov analysis, the proposed control laws can guarantee the globally asymptotic stability of the whole system and estimate the upper bounds of uncertain model parameters at the same time. Furthermore, a group of modified control laws is obtained, which stabilises the closed-loop system under input constraints. Finally, simulation results are presented to validate the effectiveness of the proposed approach.  相似文献   

11.
The problem of optimal control of a spacecraft reorientation from an arbitrary initial attitude to a prescribed angular attitude is studied. The reorientation time is given. The case when the quadratic norm of the angular velocity vector of the spacecraft is minimized is studied. Using the necessary optimality conditions in the form of Pontryagin??s maximum principle and the quaternion method for spacecraft motion control, an analytical solution of this problem is obtained. Formal equations are derived and expressions for the optimal control program are obtained. For a dynamically symmetric spacecraft, the angular velocity is obtained in the analytical form. Results of the mathematical simulation of the spacecraft dynamics under the optimal control are presented that demonstrate the practical usefulness of the proposed algorithm for the spacecraft attitude control.  相似文献   

12.
马克茂 《控制与决策》2013,28(2):201-204
针对大型空间飞行器的大角度姿态控制问题,考虑航天器惯量矩阵中的不确定性和外部扰动力矩,应用高阶滑模控制方法设计了姿态跟踪控制律.采用的二阶滑模控制方法改善了系统针对不确定性及外部扰动的鲁棒性,并减弱了振颤现象.针对所设计的控制器进行了仿真验证,并与一阶滑模控制进行了对比,仿真结果表明了所提出方法的有效性.  相似文献   

13.
In this article, the problem of decentralised cooperative attitude tracking based on relative attitude information is considered in the context of deep space spacecraft formation flying. We use modified Rodriguez parameters for attitude representation due to its nonreduction. We first present a distributed sliding-mode estimator and a cooperative attitude tracking control law such that the attitudes and angular velocities of all spacecraft track their references. Then we extend the result to three different cases. In the first case, we use a passivity approach to derive a control law without angular velocity measurements, which is of significance for applications with low-cost configurations of spacecraft. In the second case, to relax the special connectivity condition given in the original control design, we obtain a locally asymptotical stability condition for any undirected connected communication topology. In the third case, we consider cooperative attitude tracking in the presence of a dynamic communication topology. Simulation results are presented to validate the effectiveness of these control laws.  相似文献   

14.
15.
ABSTRACT

In this paper, we address the robust control design problem for nonlinear dynamical systems tracking unreliable reference signals. Specifically, we present robust model reference adaptive control laws that guarantee uniform ultimate boundedness of the trajectory tracking error for nonlinear plants that are affected by matched, unmatched, and parametric uncertainties, and are subject to constraints on the state space and the measured output. These control laws guarantee satisfactory results even in case the reference trajectory or the reference output signal do not verify the given constraints and hence, may draw the plant's trajectory or measured output outside their constraint sets. A numerical example involving the attitude control of a spacecraft illustrates the feasibility of the theoretical results presented.  相似文献   

16.
This paper investigates the problem of output feedback attitude tracking control of a rigid spacecraft in the presence of external disturbances. Two optimal control laws with a disturbance estimator are developed to deal with this problem. An adapted extended state observer is used to estimate the angular velocity tracking errors and to allow for compensation for the total disturbances. The proposed control can be expressed as the sum of a nonlinear optimal controller and an estimated disturbance. For the optimal controller, the state‐dependent Riccati equation and optimal Lyapunov techniques are employed to solve the infinite‐time nonlinear optimal control problem. The developed controllers can minimize a performance index and ensure the stability of the closed‐loop system and external disturbance attenuation. On the other hand, using the adapted extended state observer, the asymptotic convergence of estimation error dynamics is proven. An example of multiaxial attitude manoeuvres is given and simulation results are included to demonstrate and verify the usefulness of the proposed controllers.  相似文献   

17.
In this paper, the fixed‐time attitude coordination control for multiple rigid spacecraft under an undirected communication graph is investigated. By using the backstepping technique, the distributed fixed‐time observer, and the method of “adding a power integrator,” a distributed fixed‐time attitude coordination control law is designed for a group of spacecraft. The proposed control scheme is nonsingular and can guarantee a group of rigid spacecraft simultaneously tracking a common desired attitude within fixed time even when the time‐varying reference attitude is available only to a subset of the group members. Rigorous analysis is provided to show that the attitude consensus tracking errors can converge to the origin in finite time which is bounded by a fixed constant independent of initial conditions. Numerical simulations are carried out to demonstrate the effectiveness of the proposed control law.  相似文献   

18.
This paper investigates attitude maneuver control issues of a flexible spacecraft with pyramid‐type single gimbaled control moment gyroscopes (SGCMGs) as the actuator. The LuGre friction model is adopted to precisely describe the nonlinearity of the SGCMG gimbal friction. Aiming at restraining the adverse effects of the friction existed in SGCMG on the attitude control performance, a robust adaptive attitude controller is proposed, and projection‐based adaptive laws are presented to estimate the friction parametric uncertainties and the bound of friction nonlinearity. By treating the flexible mode coupling effect and external disturbances as lump disturbances, the inertia uncertainties and the bound of the lump disturbances are also estimated and compensated simultaneously to reduce their adverse effect on the system. With the Lyapunov technique, the states of flexible spacecraft control system are proved to be uniformly ultimately bounded. Numerical simulations demonstrate the effectiveness of the proposed scheme.  相似文献   

19.
Using the nonlinear analog of the Fake Riccati equation developed for linear systems, we derive an inverse optimality result for several receding-horizon control schemes. This inverse optimality result unifies stability proofs and shows that receding-horizon control possesses the stability margins of optimal control laws.  相似文献   

20.
Move-blocking lowers the computational complexity of model predictive control (MPC) problems by reducing the number of optimization variables. However, this may render states close to constraints infeasible. Thus move-blocking generally results in control laws that are restrictive; the controller domains may be unacceptably and unnecessarily small. Furthermore, different move-blocking strategies may result in controller domains of different sizes, all other factors being equal. In this paper an approach is proposed to design move-blocking MPC control laws that are least-restrictive, i.e. the controller domain is equal to the maximum controlled invariant set. The domains of different move-blocking controllers are then by design equal to each other. This allows comparison of differing move-blocking strategies based on cost performance only, without needing to consider domain size also. Thus this paper is a step towards being able to derive optimal move-blocking MPC control laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号