首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the optimum operation strategy and economic analysis of a photovoltaic-diesel-battery-mains hybrid uninterruptible power supply (UPS). The system involves a photovoltaic, battery and bi-directional inverter that is connected in parallel to the grid. A diesel generator is required when the grid is not available for a longer time. The optimum operation strategy of the system is proposed for the diesel-connected mode (when the grid fails for several hours), while the economic analysis is evaluated for the grid-connected mode. The optimum strategy determines the ‘set point’ value for starting and stopping the diesel generator, resulting in a lower system operation cost within its lifetime. The optimum value is obtained by comparing the cost of the diesel fuel consumption and the battery wear. The economic analysis includes the system operation as UPS and demand side management. The system will reduce the power flow from the mains by increasing the power from the inverter to the load when the tariff is high. However, when the grid tariff is low, the power from the mains is used to charge the battery and to meet the load simultaneously.  相似文献   

2.
This paper proposes the generation scheduling approach for a microgrid comprised of conventional generators, wind energy generators, solar photovoltaic (PV) systems, battery storage, and electric vehicles. The electrical vehicles (EVs) play two different roles: as load demands during charging, and as storage units to supply energy to remaining load demands in the MG when they are plugged into the microgrid (MG). Wind and solar PV powers are intermittent in nature; hence by including the battery storage and EVs, the MG becomes more stable. Here, the total cost objective is minimized considering the cost of conventional generators, wind generators, solar PV systems and EVs. The proposed optimal scheduling problem is solved using the hybrid differential evolution and harmony search (hybrid DE-HS) algorithm including the wind energy generators and solar PV system along with the battery storage and EVs. Moreover, it requires the least investment.  相似文献   

3.
This paper presents a practical implementation of a grid interactive photovoltaic uninterruptible power supply (UPS) system using battery storage and a back up diesel generator. The system incorporates 2.5 kWp of photovoltaic arrays, a 10 kVA power conditioning unit capable of operating in both inverting and charging modes, and a 300-Ah battery bank. Two such systems were installed in two Indian cities. The project was implemented using soft loans available in India through a World Bank Loan for photovoltaic market development. The system has been working satisfactorily since May 1997 and has demonstrated the capability of the system to provide uninterrupted power, demand side management function and load voltage stabilization in a grid which experiences frequent blackouts and under/over voltage problems. Some results from the field installation are also included in this paper  相似文献   

4.
In general, the commercialized medium‐sized asynchronous wind turbines are fully automated facilities designed to operate in parallel connection to the grid; in case of isolated operation, they need to be combined with diesel generator. This paper aims at studying the method of producing electricity of maximal quality with the wind, by constructing a new stand‐alone hybrid (medium‐sized asynchronous wind turbines, UPS with battery, and photovoltaic array) power system without diesel generator. This paper proposes a new architecture of stand‐alone hybrid power system that consists of medium‐sized asynchronous wind turbine, UPS, current limiter (reactor), photovoltaic array, and consumer and dump loads; accordingly, a supervisory control and data acquisition (SCADA) for this system is suggested along with the operation strategies depending on the output power of the UPS and wind turbine, consumer load, and the battery voltage of UPS. The case study was confirmed through the simulation results of the operation of a new stand‐alone hybrid (two 110 kW of asynchronous wind turbines, 250 kVA of UPS with battery, reactor, 36 kW of photovoltaic array, and consumer and dump loads) power system. The results of the simulation showed that the system frequency change of the new stand‐alone hybrid power system was 60 ± 0.5 Hz, and the one of the wind + diesel stand‐alone hybrid system was 60 ± 1 Hz, for the sudden change of consumer load and gust. This new system can be eligible as a standardizing option for the architecture of nondiesel stand‐alone hybrid system and its SCADA system.  相似文献   

5.
西藏4kW风/光互补发电系统优化设计   总被引:7,自引:3,他引:7  
许洪华 《太阳能学报》1998,19(3):225-230
根据在西藏一个实际村庄的风、光资源和负载特性,利用美国可再生能源实验室开发的混合发电系统性能模拟软件“Hybrid2”,模拟并比较了在该村庄利用风/蓄、风/光/蓄、光/蓄系统解决其基本生活用电的技术经济可行性。模拟结果指出,风/光/蓄混合发电系统是该村庄最适合的发电系统。文中还对风/光/蓄发电系统进行了优化设计。通过改变风资源数据,利用“Hybrid2”模拟和优化设计不同风速时的发电系统,结果显示在西藏那曲地区利用风/光混合发电系统解决无电村庄居民的供电问题是可行的。  相似文献   

6.
Photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is intermittent because of depending on weather conditions. Therefore, the wind power can be considered to assist for a stable and reliable output from the PV generation system for loads and improve the dynamic performance of the whole generation system in the grid connected mode. In this paper, a novel topology of an intelligent hybrid generation system with PV and wind turbine is presented. In order to capture the maximum power, a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. The average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison with the conventional methods. The pitch angle of the wind turbine is controlled by radial basis function network-sliding mode (RBFNSM). Different conditions are represented in simulation results that compare the real power values with those of the presented methods. The obtained results verify the effectiveness and superiority of the proposed method which has the advantages of robustness, fast response and good performance. Detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.  相似文献   

7.
In this paper, a sliding mode (SM)-based direct active and reactive power control for the distributed generations (DGs) in microgrid is presented. The grid-connected microgrid contains two three-phase DGs that are photovoltaic (PV) units, and three single-phase DGs consisting of fuel cell (FC), PV, and battery. In the proposed strategy, controlling of the active and reactive powers is carried out for the single-phase and three-phase DGs without any phase angle tracking of the network voltage or synchronization transformations. The proposed robust control strategy improves power sharing and regulates power components injected by the DGs, and it is tested under balanced and unbalanced loads.  相似文献   

8.
In this study, a two-stage battery charger architecture with high-efficiency, multi-input, and output half-bridge LLC (HBLLC) resonance converter that performs a wide load range is proposed. The first input of the HBLLC is provided by the photovoltaic (PV) panel assembly on the vehicle. A high efficiency and fast maximum power point tracking (MPPT) algorithm has been developed for the PV panel to operate at the maximum power point. The other input is supplied by a grid-connected AC-DC bridgeless power factor correction (PFC) converter, which is controlled with the average current mode (ACM) control method. The most important feature that distinguishes the designed topology from previous studies is that it charges the low-voltage battery through the PV panel. In previous studies, the low-voltage battery was being charged via the high-voltage battery. This allowed the high-voltage battery to transfer power to the low-voltage battery even when it was not charged. However, in the proposed architecture, the low-voltage battery is fed by a PV panel. This condition allows the electric vehicle to take more miles with a single charge process. Furthermore, the proposed architecture reduces energy costs in the long term by providing some of the energy demanded from the grid. In addition, the proposed integrated battery charging circuit is intended to reduce the cost of additional cables. The system is designed as 3.1 kW power and operated under no load to full load. As for the performance of the proposed architecture, the peak efficiency of the LLC resonant converter is 95.3%. In addition, peak efficiency of the AC-DC bridgeless PFC converter is 97.3%, while the power factor is higher than 0.99, input current total harmonic distortion (THD) is less than 5%, MPPT method accuracy is higher than 99%, and output voltage ripples (ΔV) is less than 1 V.  相似文献   

9.
针对当前风力发电系统输出功率随机波动的问题,以永磁同步风力发电机(PMSG)与直流侧储能系统(钒氧化还原电池)整合的风力发电系统为基础,进行数字仿真建模,采用MATLAB/Simulink软件对固定负载,变化风速工况;固定风速,负荷瞬变工况;风速和负荷同时变化工况;进行了仿真试验和分析。结果表明,对于采用储能技术的风电场并网功率随机波动的平抑控制,可以利用蓄电池的充放电特性,在风速变化以及负荷瞬变时进行功率平衡的调节。  相似文献   

10.
This paper presents a transformer-less single-stage grid-connected solar photovoltaic (PV) system with active reactive power control. In the absence of active input power, grid-tied voltage source converter (VSC) is operated in the reactive power generation mode, which powers control circuitry and maintains regulated DC voltage. Control scheme has been implemented so that the grid-connected converter continuously serves local load. A data-based maximum power point tracking (MPPT) has been implemented at maximum power which performs power quality control by reducing total harmonic distortion (THD) in grid-injected current under varying environmental conditions. Standards (IEEE-519/1547) stipulates that current with THD greater than 5% cannot be injected into the grid by any distributed generation (DG) source. MPPT tracks actual variable DC link voltage while deriving maximum power from PV array and maintains DC link voltage constant by changing the converter modulation index. Simulation results with the PV model and MPPT technique validations demonstrate effectiveness of the proposed system.  相似文献   

11.
针对传统的UPS蓄电池组充电模式充电电流存在过冲现象且超调量大,会极大地缩短蓄电池组使用寿命,提出了一种基于模糊PID控制的智能充电策略,做了相关的试验并在Matlab/Simulink软件中进行了仿真。将此充电模式应用于某煤化工项目聚丙烯装置的UPS蓄电池组,结果表明该充电模式充电过程比传统充电过程具有更好的充电电流特性。  相似文献   

12.
风/光互补电站控制监测系统   总被引:1,自引:1,他引:1  
本文所介绍的风/光互补电站的控制监测系统,采用了单片机作为控制芯片,较好地实现了蓄电池的充、放电控制和风力发机组的保护功能,并具有蓄电池充、放电控制的温度补偿功能,同时对运行数据进行了统计和计算。  相似文献   

13.
R.  J. 《Renewable Energy》2006,31(3):285-305
High wind penetration wind diesel hybrid systems (WDHS) have three modes of operation: diesel only (DO), wind diesel (WD) and wind only (WO). The control requirements for frequency control in WO mode are analysed and a distributed control system (DCS) is proposed for this frequency control, describing the actuation of its sensor and actuator nodes. A power system for WO mode consisting of a wind turbine generator (WTG), a synchronous machine (SM), the consumer load, a battery based energy storage system (ESS) and a discrete dump load (DL) along with the associated DCS have been simulated. By means of a 400 Hz reference power message that establishes the active power necessary for frequency regulation and a prescribed active power sharing between the ESS and DL actuators, graphs for frequency, voltage and active powers for consumer load and wind speed changes are presented. The results of the simulation show maximum settling times and frequency per unit variation of 1.5 s and 0.16% respectively, for the previous input changes. The DCS solution presented could constitute a proposal for the standardization of the control for WO mode in high wind penetration WDHS which rely on a SM to generate the voltage waveform in that mode.  相似文献   

14.
大规模风电并网会引起电力系统调峰能力不足,造成火电机组频繁启停或弃风。文章利用电池储能充放电灵活、可补充常规机组调峰能力不足的特性,提出了AGC机组、NON-AGC机组与储能系统间的协调控制策略。该策略引入了改进调度时间级,实现储能与常规机组时间协调配合;以AGC机组与NON-AGC机组的协调机制为基础,建立了AGC机组向NON-AGC机组与电池储能的转移功率模型。根据前一时刻机组的输出功率,计算出机组的调节余量实现电池储能参与系统调峰。实际系统算例分析结果表明,所提控制策略的可行性和有效性。  相似文献   

15.
From the perspective of global warming mitigation and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all-electric apartment houses or residence such as DC smart houses are increasing. However, due to the fluctuating power from renewable energy sources and loads, supply-demand balancing of power system becomes problematic. Smart grid is a solution to this problem. This paper presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuation. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuation, it is possible to reduce the electric power consumption and the cost of electricity. This system consists of photovoltaic generator, heat pump, battery, solar collector, and load. To verify the effectiveness of the proposed system, results are used in simulation presented.  相似文献   

16.
17.
为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。  相似文献   

18.
Palestine has a large number of rural small villages far from the national electric grids. Electrical loads in such villages are mostly small and can be covered by means of photovoltaic (PV) generators, which are economically more feasible than extending the electric grid or using diesel electric generators. Since PV has been rarely used in Palestine, this paper is devoted to investigating the potential of PV applications in Palestine, identifying the barriers for prevalence of PV applications as in other countries and demonstrating the reliability and feasibility of utilizing PV systems by presenting the test results of a PV system by supplying a rural clinic with its power demands. A method for designing the PV power system respecting the local environmental conditions is presented in this paper. The results of the measurements carried out over two years verify the reliability of the applied method. The illustrated test results show how far the PV-power generation can be matched with load demands and state of battery charge even during periods of low solar radiation. This could be achieved by respecting the local weather parameters in the illustrated sizing method. Long term field experience in designing, testing and operation of PV projects outside Palestine is presented in this paper.  相似文献   

19.
In a system composed of a photovoltaic (PV) cell, a converter and a resistive load, the Maximum Power Point Tracking (MPPT) techniques are applied at the output of the PV panel and not at the level of the load. In this study, the considered load is a battery at different States Of Charge (SOC) that is charged by the PV panel. The power consumed by the battery is related to its SOC. Consequently, an empty battery consumes more current than a charged one. At full state of charge, the battery does not call for more energy and thus it is not rewarding to extract more power from the PV panel.Besides, in a stand-alone photovoltaic system, the size of the PV panel and the battery should be respected. Thus, the PV current at different irradiances should be compatible with the charging current required to charge the battery at different SOC. A critical situation occurs at high irradiance when the PV panel delivers a high current at Maximum Power Point (MPP) that exceeds the tolerated charging current. The current reaches the top limit when the battery is totally empty, caused by the big difference in potential between the converter output and the battery voltages. In this case, the battery starts to gas when attempts are made to charge it faster than it can absorb the energy. On the other hand, in a fully charged battery, the difference in potential between the converter and the battery is zero. In this case, there is no need to track the MPP.In this study, we will focus on the load type and suggest new methods to reach the MPP depending on the load state. In the proposed designs, the components of the stand-alone system are protected even if they are not well sized. In addition, we will focus on the development of the PV array mathematical model. The results achieved with the system, as well as the experimental results of a laboratory prototype, will be given.  相似文献   

20.
This paper presents a general model—based on the Monte Carlo simulation—for the estimation of power system uncertainties and associated reserve and balancing power requirements. The proposed model comprises wind, PV and load uncertainty, together with wind and PV production simulation. In the first stage of the model, wind speed and solar irradiation are simulated, based on the plant disposition and relevant data. The second stage of the model consists of wind speed, PV power and load forecast error simulation, based on the associated statistical parameters. Finally, both wind and PV forecast error are combined with the load forecast error, resulting in the net uncertainty. This net uncertainty, aggregated on a yearly level, presents a dominant component in balancing power requirements. Proposed model presents an efficient solution in planning phase when the actual data on wind and PV production is unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号