首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In situ time-resolved FTIR spectroscopy was used to study the reaction mechanism of partial oxidation of methane to synthesis gas and the interaction of CH4/O2/He (2/1/45) gas mixture with adsorbed CO species over SiO2 and γ-Al2O3 supported Rh and Ru catalysts at 500–600°C. It was found that CO is the primary product for the reaction of CH4/O2/He (2/1/45) gas mixture over H2 reduced and working state Rh/SiO2 catalyst. Direct oxidation of methane is the main pathway of synthesis gas formation over Rh/SiO2 catalyst. CO2 is the primary product for the reaction of CH4/O2/He (2/1/45) gas mixture over Ru/γ-Al2O3 and Ru/SiO2 catalysts. The dominant reaction pathway of CO formation over Ru/γ-Al2O3 and Ru/SiO2 catalysts is via the reforming reactions of CH4 with CO2 and H2O. The effect of space velocity on the partial oxidation of methane over SiO2 and γ-Al2O3 supported Rh and Ru catalysts is consistent with the above mechanisms. It is also found that consecutive oxidation of surface CO species is an important pathway of CO2 formation during the partial oxidation of methane to synthesis gas over Rh/SiO2 and Ru/γ-Al2O3 catalysts.  相似文献   

2.
A novel process concept called tri-reforming of methane has been proposed in our laboratory using CO2 in the flue gases from fossil fuel-based power plants without CO2 separation [C. Song, Chemical Innovation 31 (2001) 21–26]. The proposed tri-reforming process is a synergetic combination of CO2 reforming, steam reforming, and partial oxidation of methane in a single reactor for effective production of industrially useful synthesis gas (syngas). Both experimental testing and computational analysis show that tri-reforming can not only produce synthesis gas (CO + H2) with desired H2/CO ratios (1.5–2.0), but also could eliminate carbon formation which is usually a serious problem in the CO2 reforming of methane. These two advantages have been demonstrated by tri-reforming of CH4 in a fixed-bed flow reactor at 850 °C with supported nickel catalysts. Over 95% CH4 conversion and about 80% CO2 conversion can be achieved in tri-reforming over Ni catalysts supported on an oxide substrate. The type and nature of catalysts have a significant impact on CO2 conversion in the presence of H2O and O2 in tri-reforming in the temperature range of 700–850 °C. Among all the catalysts tested for tri-reforming, their ability to enhance the conversion of CO2 follows the order of Ni/MgO > Ni/MgO/CeZrO > Ni/CeO2 ≈ Ni/ZrO2 ≈ Ni/Al2O3 > Ni/CeZrO. The higher CO2 conversion over Ni/MgO and Ni/MgO/CeZrO in tri-reforming may be related to the interaction of CO2 with MgO and more interface between Ni and MgO resulting from the formation of NiO/MgO solid solution. Results of catalytic performance tests over Ni/MgO/CeZrO catalysts at 850 °C and 1 atm with different feed compositions confirm the predicted equilibrium conversions based on the thermodynamic analysis for tri-reforming of methane. Kinetics of tri-reforming were also examined. The reaction orders with respect to partial pressures of CO2 and H2O are different over Ni/MgO, Ni/MgO/CeZrO, and Ni/Al2O3 catalysts for tri-reforming.  相似文献   

3.
The partial oxidation of ethanol was investigated over Ru and Pd catalysts supported onto yttria over a wide range of temperatures (473–1073 K). The product distributions obtained over these catalytic systems were correlated with diffuse reflectance infrared spectroscopy analyses (DRIFTS). Results showed that reaction route depended strongly on the type of metal. The decomposition of ethoxy species to CH4 and CO or oxidation to CO2 was promoted by Pd, and the acetaldehyde desorption was predominant over Ru in the low temperature region. Furthermore, the acetate and carbonate formation prevailed over Pd, which explained the lower acetaldehyde selectivity. The presence of CH4 and CO2 at high temperature is assigned to the decomposition of acetate species via carbonates over Pd-based catalysts. Ru was more suitable system for H2 production than Pd by achieving a selectivity of about 59%.  相似文献   

4.
CH4/CO2 reforming over La2NiO4 and 10%NiO/CeO2–La2O3 catalysts under the condition of supersonic jet expansion was studied via direct monitoring of the reactants and products using the sensitive technique of cavity ring-down spectroscopy. Vibration–rotational absorption lines of CH4, H2O, CO2 and CO molecules were recorded in the near infrared spectral region. Our results indicated that La2NiO4 is superior to 10%NiO/CeO2–La2O3 in performance. In addition, we observed enhanced reverse-water-gas-shift reaction at augmented reaction temperature. The formation of reaction intermediates was also investigated by means of time-of-flight mass spectrometry and there was the detection of CHx+, OH+ and H+ species.  相似文献   

5.
The oxidation of CH4 over Pt–NiO/δ-Al2O3 has been studied in a fluidised bed reactor as part of a major project on an autothermal (combined oxidation–steam reforming) system for CH4 conversion. The kinetic data were collected between 773 and 893 K and 101 kPa total pressure using CH4 and O2 compositions of 10–35% and 8–30%, respectively. Rate–temperature data were also obtained over alumina-supported monometallic catalysts, Pt and NiO. The bimetallic Pt–NiO system has a lower activation energy (80.8 kJ mol−1) than either Pt (86.45 kJ mol−1) and NiO (103.73 kJ mol−1). The superior performance of the bimetallic catalyst was attributed to chemical synergy. The reaction rate over the Pt–NiO catalyst increased monotonically with CH4 partial pressure but was inhibited by O2. At low partial pressures (<30 kPa), H2O has a detrimental effect on CH4 conversion, whilst above 30 kPa, the rate increased dramatically with water content.  相似文献   

6.
D. Qin  J. Lapszewicz 《Catalysis Today》1994,21(2-3):551-560
The activity of mixed steam and CO2 reforming of CH4 to produce synthesis gas was investigated and compared with those of steam reforming alone and CO2 reforming alone at 600–900°C under atmosphere pressure on MgO-supported noble metals. Mixed reforming shows a far lower CH4 conversion than the value for thermodynamic equilibrium. The activity decreases following the order Ru,Rh> Ir> Pt,Pd. Little deactivation was observed for Ru, Rh and Ir catalysts. An isotope labelled 13CO2 experiment was carried out in situ for mixed reforming on Rh/MgO and the results suggest that CO2 dissociates as CO-M and O-M. The results of the temperature program reaction (TPR) of mixed reforming shows that CH4 adsorbs and dissociates before reaction starts and that CO2 reforming and steam reforming start simultaneously. A possible reaction mechanism is discussed.  相似文献   

7.
Highly dispersed titanium oxide catalysts have been prepared within zeolite cavities as well as in the zeolite framework and utilized as photocatalysts for the reduction of CO2 with H2O to produce CH4 and CH3OH at 328 K. In situ photoluminescence, ESR, diffuse reflectance absorption and XAFS investigations indicate that the titanium oxide species are highly dispersed within the zeolite cavities and framework and exist in tetrahedral coordination. The charge transfer excited state of the highly dispersed titanium oxide species play a significant role in the reduction of CO2 with H2O with a high selectivity for the formation of CH3OH, while the catalysts involving the aggregated octahedrally coordinated titanium oxide species show a high selectivity to produce CH4, being similar to reactions on the powdered TiO2 catalysts. Ti-mesoporous molecular sieves exhibit high photocatalytic reactivity for the formation of CH3OH, its reactivity being much higher than the powdered TiO2 catalysts. The addition of Pt onto the highly dispersed titanium oxide catalysts promotes the charge separation which leads to an increase in the formation of CH4 in place of CH3OH formation.  相似文献   

8.
The catalytic behaviour of SiO2 supported MoO2 and V2O5 catalysts in the partial oxidation of methane to formaldehyde with O2 (MPO) in the range 400–800°C has been investigated by temperature programmed reaction (TPR) tests. Both the sequence of the onset temperature of product formation and the product distribution patterns signal that MPO on silica based oxide catalysts occurs mainly via a consecutive reaction path: CH4 → HCHO → CO → CO2. At T >/ 700°C a parallel surface assisted gas-phase reaction pathway leads to the formation of minor amounts of C2 products both on SiO2 and MoO3/SiO2 catalysts. The redox properties of MoO3/SiO2 and V2O5SiO2 catalysts have been systematically evaluated by H2 and CH4 temperature programmed reduction (H2-TPR, CH4-TPR) measurements. H2-TPR results do not account for the reactivity scale of oxide catalysts in the MPO. CH4-TPR measurements indicate that the enhancement in the specific activity of the silica is controlled by the capability of MoO3 and V2O5 promoters in providing ‘active’ lattice oxygen species.  相似文献   

9.
盖希坤  杨丹  吕鹏  邢闯  吕成学  杨瑞芹 《化工进展》2020,39(4):1357-1362
采用超声波辅助等体积浸渍法制备Ni-CeO2-K/γ-Al2O3催化剂用于沼气联合重整反应,采用 BET、XRD、TG/DTG等技术对催化剂性质进行了表征,在微型固定床反应装置中研究了反应温度、体积空速、原料气组成等对沼气联合重整反应特性的影响,并对催化剂的稳定性进行了研究。结果表明,助剂CeO2的加入,提高了催化剂中Ni的分散度,降低了催化剂还原温度。升高反应温度和减小体积空速,能够提高沼气中CH4和CO2的转化率;原料气中加入水蒸气,能够明显提高H2/CO体积比;加入的O2容易与H2、CO发生反应,CH4转化率稍有提高。在常压、反应温度850℃、体积空速为100000h-1、摩尔比CH4∶CO2∶H2O∶O2∶Ar=1∶0.5∶0.5∶0.1∶0.01的优化条件下,沼气中CH4转化率超过95%,CO2转化率超过75%,生成合成气H2/CO体积比约为1.6,反应48h后,催化剂未见积炭,保持稳定的活性。与沼气干重整相比,沼气联合重整不利于沼气中CO2的转化。  相似文献   

10.
During the reactions related to oxidative steam reforming and combustion of methane over -alumina-supported Ni catalysts, the temperature profiles of the catalyst bed were studied using an infrared (IR) thermograph. IR thermographical images revealed an interesting result: that the temperature at the catalyst bed inlet is much higher under CH4/H2O/O2/Ar = 20/10/20/50 than under CH4/H2O/O2/Ar = 10/0/20/70; the former temperature is comparable to that over noble metal catalysts such as Pt and Pd. Based on the temperature-programmed reduction and oxidation measurements over fresh and used catalysts, the metallic Ni is recognized at the catalyst bed inlet under CH4/H2O/O2/Ar = 20/10/20/50, although it is mainly oxidized to NiAl2O4 under CH4/H2O/O2/Ar = 10/0/20/70. This result indicates that the addition of reforming gas (CH4/H2O = 10/10) to the combustion gas (CH4/O2 = 10/20) can stabilize Ni species in the metallic state even under the presence of oxygen in the gas phase. This would account for its extremely high combustion activity.  相似文献   

11.
在工业二氧化碳加氢制甲醇过程中,硫化氢气体的引入将对该过程中使用的催化剂活性及稳定性带来负面的影响。基于此,采用微反应合成法成功制备了InZrOx和ZnZrOx锆基催化剂,并研究了在二氧化碳加氢反应中,硫化氢气体对锆基催化剂的结构性质及其催化性能的影响规律。结果表明,在T=573 K、p=3.0 MPa和GHSV=18 000 mL/(gcat·h)条件下,仅通入二氧化碳/氢气反应气时,InZrOx和ZnZrOx催化剂的二氧化碳转化率和甲醇选择性分别为7.2%、9.3%和93%、92%。在二氧化碳/氢气原料气中通入体积分数为5×10-3硫化氢气体时,InZrOx和ZnZrOx催化剂的二氧化碳转化率和甲醇选择性都降为0,这主要是因为硫化氢气体占据了氧空位,导致锆基双金属氧化物催化剂硫中毒失活。当停止通硫化氢气体时,InZrOx和ZnZrOx催化剂的二氧化碳转化率和甲醇选择...  相似文献   

12.
范洋  李文英  谢克昌 《化工学报》2015,66(8):3204-3209
褐煤热解-气化-制油系统是现代煤化工发展的一个重要研究内容。来自系统多个单元产生的CH4和CO2如果发生重整反应,将重整得到H2/CO比值较高的合成气添加到制油流程中,可实现更多的C被固定到产品中而减少CO2的直接排放量。对CH4-CO2和CH4-H2O两种重整反应方式、来自煤热解和费托合成两股甲烷气和典型的干粉气化和水煤浆气化两种流程进行了组合研究。分析结果显示,来自热解和费托合成的甲烷重整后不足以提供调节合成气H2/CO比例所需的氢气,水煤气变换反应对于褐煤制油系统来说是必需的。从C转化成油的角度来看,采用干粉气化和CH4-H2O重整的方案是较好的选择。  相似文献   

13.
Conversion of NOx with reducing agents H2, CO and CH4, with and without O2, H2O, and CO2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NOx to N2 conversion with H2 and CO (>90% conversion and N2 selectivity) range under lean conditions. The formation of N2O is absent in the presence of both H2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H2 and CH4 reducing agent but is less obvious with H2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH4, 500 ppm NO, 5% O2, 10% H2O (0–1% H2), N2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NOx reduction with H2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K.  相似文献   

14.
The catalytic reforming of methane by steam is an important industrial process that produces H2, CO and CO2, thus chemically transforming natural gas, coal gas and light hydrocarbon feedstocks to synthesis gas or hydrogen fuel. Methane-steam reforming may consist of a number of reactions depending on the reforming catalyst, operating conditions and feedstock composition, The typical industrially desirable reactions are the reverse of methanation (CH4 + H2O = CO + 3H2) and the water-gas shift (CO + H2O = CO2 + H2). Both reactions are equilibrium limited and the composition of the mixture that exits the reformer is in accordance with the one calculated thermodynarmically. Removal of reaction products at the reactor exit by means of selective membrane permeation can offer improved CH4 conversions and CO2 and H2 yields, assuming the subsequent utilization of the reject streams by a second methane-steam reformer. We numerically investigated the feasibility of a system of two tubular methane-steam reformers, in series with an intermediate permselective polyimide membrane permeator, as means of improving the overall CH4 conversion and the H2, CO2 yields over conventional methane-steam reforming equilibrium reaction-separation schemes that are currently in industrial practice. The unique feature of the permselective polyimide separator is the simultaneous removal of H2 and CO2 versus CH4 and CO from the reformed streams. The utilized 6FDA-3,3', 5,5'-TMB aromatic polyimide was reportedly characterized [10] and found to exhibit superior permselective properties compared with other polyimides of the same or different dianhydride sequence. Conversion and yield of the designed reactor-membrane permeator reforming system can be maximized by optimizing the permselective properties of the membrane material and the design variables of the reactors and the permeator. Product recovery and purity in the permeate stream need to be compromised to overall enhance methane conversion and product yield. The operating variables that were varied to investigate their effect on the magnitude of conversion and yield included the inlet pressure of the first reformer, the temperature of both reformers, and the permeator dimensionless Pe' number (variation of the first two variables results to a drastic change in the composition of the reformed stream that enters into the permeator). The numerical results show that the new reformer-membrane permeator cascade process can be more effective (it can offer increased CH4 conversions and H2, CO2 yields) than conventional equilibrium methane-steam reforming reaction-separation processes currently in practice.  相似文献   

15.
We have investigated the catalytic behavior of Pt encapsulated TiO2 nanotubes for the water gas shift reaction as well as the hydrogenation of CO. Pt–TiO2 nanotube catalysts were prepared by employing fine fiber shaped crystals of [Pt(NH3)4](HCO3)2 complex as a structure determining template material. The turnover frequencies (TOF) of these nanotube catalysts were more than one order of magnitude larger than conventional impregnation Pt/TiO2 catalysts, and the selectivity for methanol in CO–H2 reaction was extraordinary high compared to the impregnation catalysts. The XPS and XRD analyses of the nanotubes revealed characteristic electronic state of reduced TiO2 (Ti3+ in rutile structure) with zerovalent Pt even after the calcination at 773 K. In WGS reaction, electron rich Ti3+ on the nanotube wall may play an important role to activate water molecules for the oxidation of CO. In CO–H2 reaction, similar promotion effect of Ti3+ species may be operating for selective methanol formation by supplying active OH(a).  相似文献   

16.
Titanium oxide species included within the framework of mesoporous zeolites (Ti-MCM-41 and Ti-MCM-48) prepared by a hydrothermal synthesis exhibited high and unique photocatalytic reactivity for the reduction of CO2 with H2O at 328 K to produce CH4 and CH3OH in the gas phase. In situ photoluminescence, diffuse reflectance absorption, ESR and XAFS investigations indicated that the titanium oxide species are highly dispersed within the zeolite framework and exist in tetrahedral coordination. The charge transfer excited state of the highly dispersed titanium oxide species played a significant role in the reduction of CO2 with H2O exhibiting a high selectivity for the formation of CH3OH.  相似文献   

17.
A series of 1 wt.%Pt/xBa/Support (Support = Al2O3, SiO2, Al2O3-5.5 wt.%SiO2 and Ce0.7Zr0.3O2, x = 5–30 wt.% BaO) catalysts was investigated regarding the influence of the support oxide on Ba properties for the rapid NOx trapping (100 s). Catalysts were treated at 700 °C under wet oxidizing atmosphere. The nature of the support oxide and the Ba loading influenced the Pt–Ba proximity, the Ba dispersion and then the surface basicity of the catalysts estimated by CO2-TPD. At high temperature (400 °C) in the absence of CO2 and H2O, the NOx storage capacity increased with the catalyst basicity: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr. Addition of CO2 decreased catalyst performances. The inhibiting effect of CO2 on the NOx uptake increased generally with both the catalyst basicity and the storage temperature. Water negatively affected the NOx storage capacity, this effect being higher on alumina containing catalysts than on ceria–zirconia samples. When both CO2 and H2O were present in the inlet gas, a cumulative effect was observed at low temperatures (200 °C and 300 °C) whereas mainly CO2 was responsible for the loss of NOx storage capacity at 400 °C. Finally, under realistic conditions (H2O and CO2) the Pt/20Ba/Al5.5Si catalyst showed the best performances for the rapid NOx uptake in the 200–400 °C temperature range. It resulted mainly from: (i) enhanced dispersions of platinum and barium on the alumina–silica support, (ii) a high Pt–Ba proximity and (iii) a low basicity of the catalyst which limits the CO2 competition for the storage sites.  相似文献   

18.
In this contribution, a commercial spherical SiO2 was modified with different amounts of La2O3, and used as the support of Ni catalysts for autothermal reforming of methane in a fluidized-bed reactor. Nitrogen adsorption, XRD and H2-TPR analysis indicated that La2O3-modified SiO2 had higher surface area, strengthened interaction between Ni and support, and improved dispersion of Ni. CO2-TPD found that La2O3 increased the alkalescence of SiO2 and improved the activation of CO2. Coking reaction (via both temperature-programmed surface reaction of CH4 (CH4-TPSR) and pulse decomposition of CH4) disclosed that La2O3 reduced the dehydrogenation ability of Ni. CO2-TPO, O2-TPO (followed after CH4-TPSR) confirmed that only part amount of carbon species derived from methane decomposition could be removed by CO2, and O2 in feed played a crucial role for the gasification of the inactive surface carbons. Ni/xLa2O3-SiO2 (x = 10, 15, 30) possessed high activity and excellent stability for autothermal reforming of methane in a fluidized-bed reactor.  相似文献   

19.
In this paper, the effect of CO2 and H2O on NOx storage and reduction over a Pt–Ba/γ-Al2O3 (1 wt.% Pt and 30 wt.% Ba) catalyst is shown. The experimental results reveal that in the presence of CO2 and H2O, NOx is stored on BaCO3 sites only. Moreover, H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. Only 16% of the total barium is utilized in NO storage. The rich phase shows 95% selectivity towards N2 as well as complete regeneration of stored NO. In the presence of CO2, NO is oxidized into NO2 and more NOx is stored as in the presence of H2O, resulting in 30% barium utilization. Bulk barium sites are inactive in NOx trapping in the presence of CO2·NH3 formation is seen in the rich phase and the selectivity towards N2 is 83%. Ba(NO3)2 is always completely regenerated during the subsequent rich phase. In the absence of CO2 and H2O, both surface and bulk barium sites are active in NOx storage. As lean/rich cycling proceeds, the selectivity towards N2 in the rich phase decreases from 82% to 47% and the N balance for successive lean/rich cycles shows incomplete regeneration of the catalyst. This incomplete regeneration along with a 40% decrease in the Pt dispersion and BET surface area, explains the observed decrease in NOx storage.  相似文献   

20.
Crystallization of diamond was studied in the CO2–C, CO2–H2O–C, H2O–C, and CH4–H2–C systems at 5.7 GPa and 1200–1420°C. Thermodynamic calculations show generation of CO2, CO2–H2O, H2O and CH4–H2 fluids in experiments with graphite and silver oxalate (Ag2C2O4), oxalic acid dihydrate (H2C2O4·2H2O), water (H2O), and anthracene (C14H10), respectively. Diamond nucleation and growth has been found in the CO2–C, CO2–H2O–C, and H2O–C systems at 1300–1420°C. At a temperature as low as 1200°C for 136 h there was spontaneous crystallization of diamond in the CO2–H2O–C system. For the CH4–H2–C system, at 1300–1420°C no diamond synthesis has been established, only insignificant growth on seeds was observed. Diamond octahedra form from the C–O–H fluids at all temperature ranges under investigation. Diamond formation from the fluids at 5.7 GPa and 1200–1420°C was accompanied with the active recrystallization of metastable graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号