首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铝合金脉冲YAG激光焊脉冲调制参数对焊缝形状参数的影响   总被引:3,自引:3,他引:0  
以2mm厚LF3铝合金薄板为对象,研究了在平均功率和焊接速度不变时脉冲YAG激光焊脉冲调制参数(脉宽、频率及单脉冲能量)对热导焊缝形状参数(熔深、熔宽及深宽比)的影响规律,并结合脉冲激光焊间断作用的特征,引入"有效峰值功率密度"综合考虑焊接速度、频率、脉宽以及光斑大小对焊缝形状参数的影响.此外,还对脉冲激光焊所形成的特殊的层状焊缝形貌进行研究和分析.结果表明,焊缝形状参数受脉宽及峰值功率密度双重作用的影响.脉冲焊得到的焊缝呈现多层状形貌,层数随频率升高而增多.  相似文献   

2.
Effects of output waveforms on penetration for Nd: YAG laser welding   总被引:1,自引:0,他引:1  
0 IntroductionLaserbeamweldingisoneoftheadvancedweldingtechniqueswidelyappliedtoindustryandscienceresearch.Becauseofmanysuperiorityoflaserweldingincludinghighefficiencyandspeed,smalldeformation,deeppenetration(highratioofpenetrationtowidthofweld),fewdef…  相似文献   

3.
Abstract

To facilitate pulse Nd–YAG laser spot weld development, it is common practice to adjust the pulse energy, duration, and focus spot size. An accurate understanding of the effect of these parameters on melting, weld appearance, and heat input is thus required. Calorimetric measurements of the net heat input to 304 stainless steel workpieces for laser spot welds have been completed. A pulse Nd–YAG laser was used with varying pulse energies from 1 to 5·5 J, and pulse durations of 2·2 and 7·0 ms. Measurements showed the absorption for spot welds produced using the pulsed Nd–YAG laser to vary from 38 to 67% and to be relatively insensitive to beam intensity. Analysis of the continuous point source equation for conduction heat flow in solids was used to predict the weld size for the pulse energy and duration measured in the experiment. Calculations of the weld pool volume from the weld metallography were used to determine the melting for each spot weld. Comparisons of the measured weld size with the three-dimensional model predicted size indicated that the observed weld pools are larger than is expected from the measured workpiece energy. Analysis of the experimental data and the theoretical model has revealed a substantial increase in melting for short duration pulses versus long duration pulses of the same energy. The benefit of laser spot welding parameter optimisation is hence indicated.  相似文献   

4.
Abstract

Two Nd–YAG laser beams were combined at a certain point on the workpiece surface to increase weld penetration depth. One of the beams was a pulsed laser beam, and the other was a continuous wave laser beam or a modulated laser beam. Using this combination of laser beams, a wide range of welding conditions, such as average power, peak power, and power density, could be selected. A high peak power pulsed laser beam would play a significant role in forming a keyhole, but a severe spatter loss problem could be encountered under high peak power laser conditions, thus the conditions necessary to prevent spatter loss were investigated. The greatest penetration depth is obtained under the critical conditions for spatter loss. Critical conditions for spatter loss are controlled by the peak power of a pulsed laser beam, thus deeper weld penetration is obtained using a pulsed laser beam with higher average power, that is, of longer pulse width and/or a higher repetition rate within the limit of the oscillator output. Moreover, spatter loss is reduced under conditions providing large molten zones in the weld, thus a higher peak power pulsed laser beam can be employed under such conditions. Large molten zones are obtained using a modulated laser beam of a high average power and/or low welding speeds.  相似文献   

5.
YAG激光与脉冲MIG复合焊接   总被引:6,自引:1,他引:6       下载免费PDF全文
研究了YAG(掺钕钇铝石榴石 ,Nd 3:Y3Al5O1 2 )激光与脉冲MIG电弧复合焊接铝合金的新工艺 ,设计制造了复合焊接机头 ,探讨了各种规范参数对焊缝成形的影响规律及激光与电弧的复合作用。结果表明 ,在比较宽的参数范围内YAG激光 -脉冲MIG复合焊接铝合金焊缝成形美观 ,无气孔等缺陷 ,熔深与激光单独焊比增加 4倍 ,与脉冲MIG焊接比增加 1倍以上 ,焊速显著提高 ,是一种理想的焊接工艺。  相似文献   

6.
Abstract

The effects of Mg content on the weldability of aluminium alloy sheet using the dual-beam Nd:YAG laser welding process have been studied by making bead-on-plate welds on 1.6 mm thick AA 1100, AA 5754 (3.2 wt-%Mg) and AA 5182 (4.6 wt-%Mg) alloy sheets. Whereas all full-penetration laser welds made in 1100 aluminium were of excellent quality,many of the welds produced in the aluminium–magnesium alloys exhibited rough, spiky underbead surfaces with drop-through and undercut. A limited range of process variables was found, however, that allowed welds with acceptable weld bead quality to be produced in the 5754 and the 5182 alloy sheet. Goodwelds were only produced in these alloys if the lead/lag laser beam power ratio was ≥1. Weld penetration and the maximum welding speed allowing full penetration keyhole-mode welding were observed to increase with Mg content. This was attributed to the effect of Mg on the vapour pressure within the keyhole and the surface tension of the Al–Mg alloys. Significant occluded vapour porosity was seen in the 5754 and 5182 alloy welds with borderline penetration; however, there was no evidence of porosity in the acceptable full-penetration welds with smooth underbead surfaces. Hardness profiles in the 5754 and 5182 welds showed a gradual increase in hardness from the base metal values through the heat affected zone (HAZ) to a peak in hardness in the weld metal adjacent the fusion boundary. It is possible that this increase in hardness may be the result of the presence of Mg2Al3 or metastable Mg2Al3′ precipitates in this region of the weld and HAZ.  相似文献   

7.
Abstract

In the present work a 2·5 kW high power Nd–YAG laser is used in the bead on plate (BOP) and butt welding of Inconel 690 plates of thickness 3 mm. Welding is performed using a rectangular laser pulse, for which the peak to base power ratio Wr is reduced from an initial value of 10 to a value of 1, maintaining an identical mean power of 1·7 kW. Therefore, the welding mode changes from a pulsed wave to a continuous wave. The BOP results indicate that the depth of the weld penetration increases at a lower travel speed and/or a higher value of Wr. In the butt welding process, as Wr is increased from 1 to 10, the cellular microstructure of the weld remains relatively unchanged, but the macroporosity formation ratio decreases from 7·1% to 0·6%. At low values of Wr, macroporosity is identified primarily in the root region. However, as Wr increases, the associated periodic high power increases the agitation of the molten pool and probably causes bubbles to float upwards. Consequently, at higher values of Wr, the regions of macroporosity are distributed randomly throughout the weld. Although microcracks are not apparent within any of the welds, each weld exhibits slight microporosity. This microporosity decreases as Wr increases. The present results confirm that a pulsed laser beam with an appropriate peak power can be used to achieve a compromise between the mechanical properties and surface roughness of the weld for Inconel 690 in Nd–YAG laser welding.  相似文献   

8.
利用余高-熔宽比表示焊缝表面铺展性并与焊缝余高一起作为参数来评价复合热源平板堆焊焊缝的表面成形,通过试验研究了Nd:YAG激光+脉冲MAG复合热源堆焊过程中焊接规范参数对复合热源平板堆焊焊缝表面成形的影响并分析了激光对复合热源堆焊焊缝表面成形的影响.研究结果表明,在电弧功率变化过程中,随着激光功率的增大,其对平板堆焊焊缝表面成形的影响也逐渐增大;焊接速度变化过程中,激光束能量的加入不仅改善堆焊焊缝表面成形还极大地提高了焊接速度;而在光丝间距和离焦量变化过程中,激光束对复合热源平板堆焊焊缝表面成形的影响很小.  相似文献   

9.
Abstract

An Nd–YAG laser processing system has been developed in which the beams of three Nd–YAG lasers (two 2·0 kW continuous wave oscillators and one 1·5 kW pulsed oscillator) were combined at the input end of a single optical fibre and transmitted through the optical fibre. The power distribution of the integrated beam, even at the defocused point of the processing optics, was not split between the three beams. Complex pulse waveform control was therefore possible. The effect of the waveforms on penetration depth was examined. Penetration depth for the rectangular modulated laser beam superimposed on the pulse laser beam with a delay was deeper than that for the rectangular modulated laser beam and the continuous laser beam, even under the same average power condition. The effective delay was 1–3 ms. Deepest penetration depth for the rectangular modulated laser beam superimposed on the pulse laser beam was 1·7 times that for the continuous laser beam.  相似文献   

10.
以0Cr18Ni9Ti不锈钢钢板为试验材料,研究了低功率脉冲YAG激光-脉冲MAG电弧复合热源和单脉冲MAG焊接不锈钢.结果表明,低功率脉冲YAG激光-脉冲MAG电弧复合热源同样具有大功率激光-电弧复合焊接才有的增加熔深、提高焊接速度、稳定焊接过程等优点;低功率脉冲YAG激光的加入改变了电弧形态,电弧根部被吸引和压缩现象显著,提高了能量利用率;与单脉冲MAG堆焊相比,在相同焊接速度下复合焊最大能增加熔深1.3倍,在相同熔深下复合焊的焊接速度可以提高50%;复合焊焊缝的晶粒较单MAG焊缝中的晶粒细小,其焊缝抗拉强度比单MAG的好,断裂属于延性断裂.  相似文献   

11.
以304不锈钢为对象,借助焊缝成形参数来评价YAG激光+CMT电弧复合热源横焊焊缝的成形特征,研究了Nd:YAG激光+CMT复合热源横焊过程中焊接工艺参数对焊缝成形的影响.结果表明,在CMT电弧焊接中加入激光可以改善横焊焊缝成形;在激光能量和焊接电流一定时,光丝间距存在一个最佳匹配,使得Nd:YAG激光+CMT复合热源横焊焊缝成形良好;与其它复合热源焊接相对比激光功率对熔深影响较大,对横焊焊缝成形的影响程度与焊接电流有关;焊接速度对横焊焊缝成形影响显著;离焦量对横焊焊缝成形影响较小;电弧功率对横焊焊缝的偏离度影响显著.  相似文献   

12.
Abstract

The weldability of 1.6 mm thick 5182 Al–Mg alloy sheet by the single- and dual-beam Nd:YAG laser welding processes has been examined. Bead-on-plate welds were made using total laser powers from 2.5 to 6 kW, dual-beam lead/lag laser beam power ratios ranging from 3:2 to 2:3 and travel speeds from 4 to 15 m min-1. The effects of focal position and shielding gas conditions on weld quality were also investigated. Whereas full penetration laser welds could be made using the 3 kW single-beam laser welder at speeds up to 15 m min-1, the underbead surface was always very rough with undercutting and numerous projections or spikes of solidified ejected metal. This 'spikey' underbead surface geometry was attributed to the effects of the high vapour pressure Mg in the alloy on the keyhole dynamics. The undesirable 'spikey' underbead geometry was unaffected by changes in focal position, shielding gas parameters or other single-beam welding process parameters. Most full penetration dual-beam laser welds exhibited either blow-through porosity at low welding speeds (4–6 m min-1) or unacceptable 'spikey' underbead surface quality at increased welding speeds up to 13.5 m min-1. Radiography revealed significant occluded porosity within borderline or partial penetration welds. This was thought to be caused by significant keyhole instability that exists under these welding conditions. A limited range of dual-beam laser process conditions was found that produced sound, pore-free laser welds with good top and underbead surface quality. Acceptable welds were produced at welding speeds of 6 to 7.5 m min-1 using total laser powers of 4.5–5 kW, but only when the lead laser beam power was greater than or equal to the lagging beam power. The improved underbead quality was attributed to the effect of the second lagging laser beam on keyhole stability, venting of the high vapour pressure Mg from the keyhole and solidification of the underbead weld metal during full penetration dual-beam laser welding.  相似文献   

13.
Abstract

Lasers are capable of producing welds with deep penetration, low distortion and faster travel speeds, compared to arc welding. More recently, laser/arc hybrid welding processes have also been generating interest for industrial fabrication. In this paper, six carbon–manganese, mainly pipeline, steels were welded using both autogenous Nd:YAG laser welding, and Nd:YAG laser/MAG hybrid welding. The improvements in weld microstructures and weld metal toughness that are possible when using the hybrid process are described and illustrated. Laser/arc hybrid welding is shown to be a process that can generate good quality welds in commercially available pipeline steels. It also has the potential to complete girth welds in these steels with significantly fewer welding passes than are currently required for arc welded pipelines, reducing the joint completion time.  相似文献   

14.
The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO2 laser and by YAG laser were compared. The results show that the full penetration weld of YAG laser welding closes to “X” shape, and weld of CO2 laser welding is “nail-head” shape.Those result from special heating mode of laser deep penetration welding. The tension strength of CO2 laser and YAG laser joints equal to that of the base metal, but the former has better ductility. All welds consist mainly of the acicular a phase and a few β phase in microstructure. The dendritic crystal of CO2 laser weld is a littlefiner than YAG laser weld. According theresearch CO2 laser is better than YAG laser for welding of BT20 titanium alloy.  相似文献   

15.
钛合金激光焊接稳定性计算模型   总被引:1,自引:0,他引:1       下载免费PDF全文
钛合金激光焊接过程的不稳定性并不是由于焊接工艺参数波动而引起的偶然现象,而是激光焊接方法所固有的一种规律性,其特征表现为,在一定的焊接工艺区间,焊缝熔深和熔宽无规则剧烈波动,焊接模式在稳定热导焊和稳定深熔焊之间来回跳变,因此,钛合金的激光焊接应具有上下两个能量监界点。在小孔形成的临界条件附近,光导致等离子体对激光能量吸收的波动与钛合金材料汽化过程的非平衡特性是产生钛合金激光焊接过程不稳定性的根本原因。本文在深入分析钛合金激光焊接过程不稳定性产生机理的基础上,结合激光焊接过程能量传输的特点,提出钛合金激光焊接稳定性临界条件的计算模型。  相似文献   

16.
Pulsed Nd: YAG laser beam has great ability for micro-machining of ceramic materials because of high laser beam intensity at low mean beam power, good focusing characteristics due to very small pulse duration, small kerf widths and narrow heat effected zones. In the paper, experimental investigations into CNC pulsed Nd:YAG laser micro-drilling of zirconium oxide (ZrO2) have been carried out. Influence of laser machining parameters on the HAZ thickness and phenomena of tapering of the machined micro-holes has been experimentally investigated. Response Surface Methodology-based optimal parametric analysis has been performed to determine the optimal setting of process parameters such as pulse frequency and pulse width, lamp current, assist air pressure for achieving minimum HAZ thickness and taper of the micro-hole machined by pulsed Nd:YAG laser. Minimum HAZ thickness has been obtained as 0.0675 mm when the lamp current, pulse frequency, assisted air pressure and pulse width are set at optimal parametric setting i.e. 17 amp, 2.0 kHz, 2.0 kg/cm2 and 2% of the duty cycle, respectively. Minimum taper has been achieved as 0.0319 at optimal parametric setting i.e. the lamp current of 17 amp, pulse frequency of 2.0 kHz, assisted air pressure of 0.6 kg/cm2 and pulse width of 2% of the duty cycle. Analysis has also been carried out for multi-optimisation of both the responses i.e. HAZ thickness and taper during pulsed Nd:YAG laser micro-drilling on ZrO2.  相似文献   

17.
Laser welding is a high power density technology of materials joining that has many advantages in comparison with conventional fusion welding methods, for example, high accuracy, flexibility, repeatability and especially very narrow heat-affected zone which results in minimal workpiece distortions. Since it is still quite expensive technology, minimal spoilage is required. Effective system of quality control and processing parameters optimization must be established to reduce total costs, which is particularly required in industrial production. In this article some results of pulsed Nd:YAG laser welding process monitoring based on the measurement of plasma electron temperature are presented. The ability of designed sensor to detect weld penetration depth has been demonstrated. Plasma spectral lines intensities measurement can discover gap instabilities as well as local sheet thickness reduction.  相似文献   

18.
以304不锈钢为对象,借助横焊焊缝横断面图像来分析Nd:YAG激光+CMT电弧复合热源横焊焊缝横断面的成形特征,研究了Nd:YAG激光+CMT电弧复合热源横焊过程中焊接工艺参数对焊缝横断面形貌的影响.结果表明,在Nd:YAG激光+CMT电弧复合热源横焊中,焊接工艺参数对横焊焊缝横断面形貌的影响显著;Nd:YAG激光加入CMT电弧焊中明显提高了复合焊缝以及复合焊中CMT焊缝的熔深;采取适当的焊接工艺参数(小的光丝间距、大的激光功率、小的焊接速度、适合的离焦量以及小的或大的CMT功率)可以避免熔池机械式叠加和焊缝横断面错位现象,使得焊缝成形良好.  相似文献   

19.
声光调Q Nd:YAG脉冲激光修锐树脂结合剂CBN砂轮   总被引:1,自引:0,他引:1  
采用声光调Q Nd:YAG脉冲激光径向辐照,对树脂结合剂CBN砂轮进行修锐试验研究。研究了单脉冲激光辐照下,平均功率,脉冲频率和离焦量等参数对烧蚀凹坑深度的影响,由此可方便获得合适的激光修锐参数;分析了声光调Q YAG脉冲激光修锐树脂CBN砂轮的选择性去除机理,观察并比较了声光调Q脉冲激光,连续激光和机械法修锐后砂轮表面的地形地貌,试验表明声光调Q Nd:YAG脉冲激光径向辐照修锐树脂CBN砂轮,可获得更为良好的修锐效果。  相似文献   

20.
铝合金脉冲激光焊Mg元素烧损行为及接头硬度分布   总被引:4,自引:2,他引:2       下载免费PDF全文
采用Nd:YAG脉冲激光对1mm厚5A05铝合金板进行焊接,结合激光焊物理过程,研究和分析了焊接工艺参数(脉冲能量、脉冲宽度、焊接速度和离焦量)对Mg元素烧损和焊缝熔深的影响,以及焊缝中Mg元素含量的变化和接头的硬度分布.结果表明,Mg元素烧损受熔池搅拌作用的影响,随搅拌作用增强和焊缝熔深的增加,焊缝中Mg元素烧损率减小;受Mg元素含量和冷却速度影响,焊接接头硬度在熔合线附近具有最大值,在焊缝中从表面到熔池底部硬度先减小再增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号