首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sidewall curl occurring by the removal of tool surfaces after forming is one adverse phenomenon that should be effectively reduced in sheet metal forming operations. Among several process parameters controlling sidewall curl, a constraint tensile force is widely used along with attainable formability by introducing blank holder and drawbead. The classic but common knowledge is that sidewall curl is suppressed for conventional sheet metals as the constraint tensile force increases. Interestingly, however, for magnesium alloy sheets that have unusual asymmetry in tension and compression it has been recently reported that springback increases as the tensile force increases within a specific range of tension. The major deformation in the sidewall usually consists of bending and unbending under tensile force. Therefore, this unique stress-strain response of sheet materials with strength-differential, including magnesium alloys, should be considered for an accurate estimation of sidewall curl. In the present study, a semi-analytical bending/unbending theory incorporating characteristic constitutive behavior of magnesium alloys was developed to evaluate the moment-curvature relationship for various levels of constraint tensile forces. The present analysis proved that the reverse effect of constraint tensile force on sidewall curl was caused by the lower resistance to plastic yielding in compression with proper combination of applied tensile force.  相似文献   

2.
Single point incremental forming (SPIF) is a sheet metal forming technique which has gained considerable interest in the research community due to its enhanced formability, greater process flexibility and reduced forming forces. However, a significant impediment in the industrial adoption of this process is the accurate prediction of fracture during the forming process. This work uses a recently developed fracture model combined with finite element analyses to predict the occurrence of fracture in SPIF of two shapes, a cone and a funnel. Experiments are performed to validate predictions from FEA in terms of forming forces, thinning and fracture depths. In addition to showing excellent predictions, the primary deformation mechanism in SPIF is compared to that in conventional forming process with a larger geometry-specific punch, using the deformation history obtained from FEA. It is found that both through-the-thickness shear and local bending of the sheet around the tool play a role in fracture in the SPIF process. Additionally, it is shown that in-spite of higher shear in SPIF, which should have a retarding effect on damage accumulation, high local bending of the sheet around the SPIF tool causes greater damage accumulation in SPIF than in conventional forming. Analysis of material instability shows that the higher rate of damage causes earlier growth of material instability in SPIF. A new theory, named the ‘noodle’ theory, is proposed to show that the local nature of deformation is primarily responsible for increased formability observed in SPIF, in-spite of greater damage accumulation as compared to conventional forming.  相似文献   

3.
Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. The characteristic of localized deformation is significantly different from conventional sheet metal forming process. To understand the fundamental material deformation mechanism during the ISF process is of great importance for ISF process design and optimization in achieving improved material formability, accuracy and more uniform thickness distribution. In this paper, an analytical model for single point incremental forming (SPIF) process has been developed to describe the localized deformation mechanism. With the consideration of both bending effect and strain hardening, the stress and strain states in the deformation zone are described. Analytical evaluation reveals that the deformation occurs not only in the contact zone, but also in the neighboring wall which has been already formed in the vicinity of the contact zone. In addition, the results also suggest that the fracture tends to appear at the transitional zone between the contact area and the formed wall. In order to validate the analytical results, SPIF simulation and experiments both have been conducted with good agreement obtained.  相似文献   

4.
基于数值模拟的方法研究在循环塑性变形下铝合金板的力学行为。首先,通过Cockcroft-Latham韧性断裂准则得到材料的断裂极限应力图,并通过实验对成形极限应力图进行验证。数值模拟结果表明:滚边时弯曲中心的应变路径可以认为是平面应变状态;采用绳式滚边方法可以改善在弯曲中心线上的应力集中现象。从滚边断口的扫描电镜照片可以发现,循环塑性变形对铝合金板的韧性断裂行为有影响。  相似文献   

5.
Uniaxial tension and press forming tests were carried out at two different strain rates and temperatures to investigate the formability of fine-grained AZ31B-O Mg alloy thin sheet. Formability parameters were determined by tensile test results. The tensile properties and formability parameters were correlated with the forming limit diagrams. The present work focused on the effects of loading orientation and deformation rate on formability. Anisotropic behaviors were observed in the mechanical properties. Maximum strengths were obtained in the direction perpendicular to the rolling direction (RD). It can be concluded that the formability of the rolled fine-grained AZ31B-O Mg alloy sheet can be influenced by loading orientation and deformation rate. Stretch formability can be enhanced at a higher deformation rate, resulting from a lower anisotropy and a higher work hardening effect. In contrast, the drawing processes can be performed at a lower deformation rate to take advantage of a higher anisotropic behavior. Specimens with the RD parallel to the major strain in the press forming tests can enhance stretch formability, whereas specimens with the RD perpendicular to the major strain can improve deep-drawability.  相似文献   

6.
The plastic anisotropy r-value is an important material parameter in sheet metal forming. The length and width strains are measured conventionally in the uniaxial tensile test using two extensometers and the r-value is fitted within a certain strain range by linear regression according to the international standard. In this study, the physical character of the plastic anisotropy is analyzed for several forming steels and an aluminium alloy. In principle, the plastic anisotropy r-value is not a material constant. It is a fitted parameter within a given strain range and its value is dependent on the strain range chosen. More accurate approximation of the current state of anisotropy of a material is given by the incremental r-value that is defined in this study. Furthermore, this parameter can be predicted well by the VPSC code for materials in the as-received and deformed state. Contrary to previous studies elsewhere, the evolution of this incremental r-value does not correlate with anisotropic work hardening and the magnitude of the r-value. It is however closely related to texture evolution during plastic deformation. Texture evolution can have remarkable effect on the plastic anisotropy r-value, the yield locus and ultimately formability.  相似文献   

7.
Single point incremental forming (SPIF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. In the SPIF process, a ball nose tool moves along a predefined tool path to form the sheet to desired shapes. Due to its unique ability in local deformation of sheet metal, the friction condition between the tool and sheet plays a significant role in material deformation. The effects of friction on surface finish, forming load, material deformation and formability are studied using a newly developed oblique roller ball (ORB) tool. Four grades of aluminum sheet including AA1100, AA2024, AA5052 and AA6111 are employed in the experiments. The material deformation under both the ORB tool and conventional rigid tool are studied by drilling a small hole in the sheet. The experimental results suggest that by reducing the friction resistance using the ORB tool, better surface quality, reduced forming load, smaller through-the-thickness-shear and higher formability can be achieved. To obtain a better understanding of the frictional effect, an analytical model is developed based on the analysis of the stress state in the SPIF deformation zone. Using the developed model, an explicit relationship between the stress state and forming parameters is established. The experimental observations are in good agreement with the developed model. The model can also be used to explain two contrary effects of friction and corresponding through-the-thickness-shear: increase of friction would potentially enhance the forming stability and suppress the necking; however, increase of friction would also increase the stress triaxiality and decrease the formability. The final role of the friction effect depends on the significance of each effect in SPIF process.  相似文献   

8.
针对钛合金板材塑性变形能力差的问题,进行了超声振动辅助成形工艺的研究,分析超声振动对钛合金TA2板材力学性能及与接触面之间摩擦系数的影响。在此基础上进行了不同宽长比坯料的超声振动辅助胀形实验,分析超声振动对TA2板材胀形力、极限胀形高度的影响。同时,基于网格应变原理,通过不同宽长比坯料极限应变的测量,建立TA2板材的成形极限图。研究结果表明,选择合适的超声振动辅助成形工艺参数, 不仅可以提高TA2板材变形能力,还可以减小摩擦对板材成形性能的影响,从而有效提高了TA2板材的成形极限。  相似文献   

9.
Commercially pure titanium (CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformation characteristics and press formability of the CP Ti sheet are not much in comparison with automotive steels and aluminum alloys. The mechanical properties and hardening behavior evaluated in stress–strain relation of the CP Ti sheet are clarified in relation with press formability. The flow curve denoting true stress–true strain relation for CP Ti sheet is fitted well by the Kim–Tuan hardening equation rather than Voce and Swift models. The forming limit curve (FLC) of CP Ti sheet as a criterion for press formability was experimentally evaluated by punch stretching test and analytically predicted via Hora's modified maximum force criterion. The predicted FLC by adopting Kim–Tuan hardening model and appropriate yield function shows good correlation with the experimental results of punch stretching test.  相似文献   

10.
Accurate prediction of spring-back is essential for the design of tools used in automotive sheet-stamping operations. The 2-D draw bending operation presents a complex form of spring-back occurring in sheet-metal forming since the sheet undergoes stretching, bending and unbending deformations. These three sets of deformation can create complex stress-strain states in the sheet which result in the formation of side-wall curls after the sheet is allowed to unload. Accurate prediction of the side-wall curl requires using finite-element shell models which can account for curvature and stress variation through the thickness caused by bending and unbending of sheet. Since such models are generally computationally intense, an alternative and efficient method of predicting side-wall curls is desirable. This paper describes a novel and robust method for predicting spring-back and side-wall curls in 2-D draw bending operations, using moment-curvature relationships derived for sheets undergoing plane-strain stretching, bending and unbending deformations. This model makes use of the membrane finite-element solution to calculate spring-back. The accuracy of the model is verified by comparison with finite element (ABAQUS) and experimental results.  相似文献   

11.
板料增量成形的研究进展   总被引:1,自引:1,他引:0  
板料增量成形是采用简单模具对板料进行逐次塑性加工的一种工艺,不需要专用的模具就可以成形较为复杂的零件,同时还具有成形力小、柔性高的特点,特别适合多品种小批量零件的生产方式,因此得到国内外学者的重视。本文重点从板料的增量压弯成形、增量拉深胀形、增量微成形3个方面对板料增量成形的发展进行综述,还对板料增量成形工艺的发展前景进行了展望,指出进行理论创新、开发新的模拟软件、探索新的成形方案、开发增量成形新设备是发展趋势。  相似文献   

12.
In negative incremental forming, a characteristic thinning band occurs on the parts when wall angles approach the maximum obtainable [D. Young, J. Jeswiet, Wall thickness variations in single point incremental forming, Proceedings of the Institute of Mechanical Engineers, Part B, Journal of Engineering Manufacture 218 (2004) 1453–1459]. The effect of this ultra-thin band on the fracture occurrence of part was studied in the current investigation. It was found that the occurrence of a thinning band on the test specimen of a formability test does not mean an effect on the test result. A reduction in the formability due to the occurrence of the thinning band occurs only if the specimen fractures in the flange area. In order to evaluate the real forming limit of a sheet metal, a condition regarding the occurrence of part fracture is proposed.  相似文献   

13.
由于TA32钛合金板室温成形性差、精度难以保证,开展了电磁辅助弯曲成形方法的实验研究,通过拉伸和电磁成形实验探究了TA32钛合金的力学性能和成形性能,获得了TA32钛合金板在准静态和动态拉伸下的应力、应变关系,给出了在电磁成形状态下的成形极限应变,阐明了电磁成形作用下的TA32钛合金的增塑机制。采用匀压式电磁辅助弯曲成形的方法对TA32钛合金板开展实验研究,结果表明:电磁辅助弯曲成形方法能够有效地提高弯曲件的成形精度,并且在一定条件下,放电能量越高,贴模效果越好、成形精度越高。带压紧翼的弯曲件的变形区外层过度伸长而产生减薄并开裂,不带压紧翼的弯曲件通过合理地控制放电电压能够获得较好的成形效果。  相似文献   

14.
Development of a new model for plane strain bending and springback analysis   总被引:3,自引:0,他引:3  
A new mathematical model is presented for plane strain bending and springback analysis in sheet metal forming. This model combines effects associated with bending and stretching, considers stress and strain distributions and different thickness variations in the thickness direction, and takes force equilibrium into account. An elastic-plastic material model and Hill’s nonquadratic yield function are incorporated in the model. The model is used to obtain force, bending moment, and springback curvature. A typical two-dimensional draw bending part is divided into five regions along the strip, and the forces and moments acting on each region and the deformation history of each region are examined. Three different methods are applied to the two-dimensional draw bending problems: the first using the new model, the second using the new model but also including a kinematic directional hardening material model to consider the bending and unbending deformation in the wall, and the third using membrane theory plus bending strain. Results from these methods, including those from the recent benchmark program, are compared. University of Michigan, Dept. of Mechanical Engineering and Applied Mechanics, Ann Arbor, Mi 48109, USA.  相似文献   

15.
Aluminum sheet is becoming increasingly common as an automotive body panel material. The heat-treatable aluminum alloys of the 6xxx series are widely used as an outer panel material, due to their ability to precipitation harden during the paint-bake cycle, resulting in improved dent resistance. Increasing the formability of these alloys would allow for multiple parts of less complex geometry to be combined into a single more complex part, thereby avoiding the costs associated with any subsequent joining operations. Incremental forming is a process that can improve material formability through the use of short, recovery heat treatments applied between increments of deformation. The objective of this study was to investigate the incremental forming behavior of 6111-T4 an alloy, which is often used for exterior body panel applications. Interrupted tensile testing was used to simulate the incremental forming process. The effect of different heat-treatment parameters on mechanical properties was analyzed. The heat treat regimen developed for uniaxial testing was then applied to a series of plane strain tests using a hemispherical punch, to simulate the more complex states of stress found in forming operations.  相似文献   

16.
Double side incremental forming (DSIF) is an emerging technology in incremental sheet forming (ISF) in recent years. By employing two forming tools at each side of the sheet, the DSIF process can provide additional process flexibility, comparing to the conventional single point incremental forming (SPIF) process, therefore to produce complex geometries without the need of using a backing plate or supporting die. Although this process has been proposed for years, there is only limited research on this process and there are still many unanswered open questions about this process. Using a newly developed ISF machine, the DSIF process is investigated in this work. Focusing on the fundamental aspects of material deformation and fracture mechanism, this paper aims to improve the understanding of the DSIF process. Two key process parameters considered in this study include the supporting force and relative position between master and slave tools. The material deformation, the final thickness distribution as well as the formability under varying conditions of these two process variables are investigated. To obtain a better understanding from the experimental results, an analytical model has been developed to evaluate the stress state in the deformation zone. Using the developed model, an explicit relationship between the stress state and key process parameters can be established and a drop of stress triaxiality can be observed in the double contact zone, which explains the enhanced formability in the DSIF process. Based on the analytical and experimental investigation, the advancements and challenges of the DSIF process are discussed with a few conclusions drawn for future research.  相似文献   

17.
To establish the efficacy of electromagnetically assisted sheet metal stamping (EMAS), a series of combined hydraulic bulging and electromagnetic forming (EMF) experiments are presented to evaluate the biaxial quasi-static-dynamic formability of an aluminum alloy (AA5052-O) sheet material. Data on formability are plotted in principal strain space and show an enhanced biaxial formability beyond the corresponding experimental results from conventional forming limit diagram. The plastic strains produced by the combined process are a little larger than or at least similar with those obtained in the fully dynamic EMF process. In addition, the biaxial forming limits of aluminum sheets undergoing both very low and high quasi-static prestraining are almost similar in quasi-static-dynamic bulging process. Limit formability seems to depend largely on the high-velocity loading condition as dictated by EMF. It appears that in quasi-static-dynamic forming, quasi-static loading is not of primary importance to the material’s formability. Based on these observations, one may be able to develop forming operations that take advantage of this formability improvement of quasi-static-dynamic deformation. Also, this could enable the use of a quasi-static preform fairly close to the quasi-static material limits for the design of an EMAS process.  相似文献   

18.
耐热铝合金FVS0812板的成形性能差,拉深成形球面形零件更是困难.本文在实验研究的基础上提出了一种新型的拉深成形工艺,即包覆拉深,采用该工艺成功拉深出相对厚度小的球面形耐热铝合金零件.该工艺可以有效地防止皱曲和破裂的产生,可以使板料的变形均匀分散,从而提高板料的冲压成形性能.包覆拉深工艺是一种适合于低塑性材料拉深成形的工艺方法.  相似文献   

19.
The Continuous Bending under Tension (CBT) test has been applied to study aspects of incremental forming. Effects of experimental conditions like speed and bending angle have been studied in particular. The results illustrate an essential aspect of incremental sheet forming (ISF): localized deformation. The actual bending radius is the most important influencing factor and this turns out to be controlled by both the pulling force and the bending angle (depth setting). Material thickness had only a minor effect. The maximum elongation before fracture of mild steel was significantly better than that of aluminium. The material is subjected to additional repetitive bending; this does affect material behaviour in general. The aspects of bending under tension as a governing mechanism in incremental sheet forming are discussed.  相似文献   

20.
In incremental sheet forming (ISF) strains can be obtained well above the forming limit curve (FLC) that is applicable to common sheet forming operations like deep drawing and stretching. This paper presents an overview of mechanisms that have been suggested to explain the enhanced formability. The difference between fracture limit and necking limit in sheet metal forming is discussed. The necking limit represents a localized geometrical instability. Localized deformation is an essential characteristic of ISF and proposed mechanisms should stabilize the localization before it leads to fracture. In literature six mechanisms are mentioned in relation to ISF: contact stress; bending-under-tension; shear; cyclic straining; geometrical inability to grow and hydrostatic stress. The first three are able to localize deformation and all but the last, are found to be able to postpone unstable growth of a neck. Hydrostatic pressure may influence the final failure, but cannot explain stability above the FLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号