首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly oriented zinc oxide thin films have been grown on quartz, Si (1 1 1) and sapphire substrates by pulsed laser deposition (PLD). The effect of temperature and substrate parameter on structural and optical properties of ZnO thin films has been characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmission spectra and PL spectra. The experimental results show that the best crystalline thin films grown on different substrate with hexagonal wurtzite structure were achieved at growth temperature 400–500 °C. The growth temperature of ZnO thin film deposited on Si (1 1 1) substrate is lower than that of sapphire and quartz. The band gaps are increasing from 3.2 to 3.31 eV for ZnO thin film fabricated on quartz substrate at growth temperature from 100 to 600 °C. The crystalline quality and UV emission of ZnO thin film grown on sapphire substrate are significantly higher than those of other ZnO thin films grown on different substrates.  相似文献   

2.
Non-polar ZnO thin films were deposited on m-plane sapphire substrates by pulsed laser deposition at various temperatures from 300 to 700 °C. The effects of growth temperature on surface morphology, structural, electrical, and optical properties of the films were investigated. All the films exhibited unique m-plane orientation indicated by X-ray diffraction and transmission electron microscopy. Based on the scanning electron microscopy and atomic force microscopy, the obtained films had smooth and highly anisotropic surface, and the root mean square roughness was less than 10 nm above 500 °C. The maximum electron mobility was ~18 cm2/V s, with resistivity of ~0.26 Ω cm for the film grown at 700 °C. Room temperature photoluminescence of the m-plane films was also investigated.  相似文献   

3.
Tin doped ZnO thin films were prepared by employing a simplified spray pyrolysis technique using a perfume atomizer and subsequently annealed under different temperatures from 350 °C to 500 °C in steps of 50 °C. The structural, optical, electrical, photoluminescence and surface morphological properties of the as-deposited films were studied and compared with that of the annealed films. The X-ray diffraction studies showed that as-deposited film exhibits preferential orientation along the (0 0 2) plane and it changes in favour of (1 0 0) plane after annealing. The increase in crystallite size due to annealing is explained on the basis of Ostwald ripening effect. It is found that the optical transmittance and band gap increases with increase in annealing temperature. A slight decrease in resistivity caused by annealing is discussed in correlation with annealing induced defect modifications and surface morphology.  相似文献   

4.
For dye-sensitized solar cells application, in this study, we have synthesized TiO2 thin films at deposition temperature in the range of 300–750 °C by metalorganic chemical vapor deposition (MOCVD) method. Titanium(IV) isopropoxide, {TIP, Ti(OiPr)4} and Bis(dimethylamido)titanium diisopropoxide, {BTDIP, (Me2N)2Ti(OiPr)2} were used as single source precursors that contain Ti and O atoms in the same molecule, respectively. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase were deposited on Si(1 0 0) with TIP at temperature as low as 450 °C. XRD and TED data showed that below 500 °C, the TiO2 thin films were dominantly grown in the [2 1 1] direction on Si(1 0 0), whereas with increasing the deposition temperature to 700 °C, the main film growth direction was changed to [2 0 0]. Above 700 °C, however, rutile phase TiO2 thin films have only been obtained. In the case of BTDIP, on the other hand, only amorphous film was grown on Si(1 0 0) below 450 °C while a highly oriented anatase TiO2 film in the [2 0 0] direction was obtained at 500 °C. With further increasing deposition temperatures over 600 °C, the main film growth direction shows a sequential change from rutile [1 0 1] to rutile [4 0 0], indicating a possibility of getting single crystalline TiO2 film with rutile phase. This means that the precursor together with deposition temperature can be one of important parameters to influence film growth direction, crystallinity as well as crystal structure. To investigate the CVD mechanism of both precursors in detail, temperature dependence of growth rate was also carried out, and we then obtained different activation energy of deposition to be 77.9 and 55.4 kJ/mol for TIP and BTDIP, respectively. Also, we are tested some TiO2 film synthesized with BTDIP precursor to apply dye-sensitized solar cell.  相似文献   

5.
《Optical Materials》2014,36(12):2624-2628
β-Ga2O3 films were grown on double-side polished MgAl6O10 (1 0 0) substrate by metal organic chemical vapor deposition (MOCVD) at 600, 650 and 700 °C. The refractive index dispersive behaviors of Ga2O3 films have the typical shape of the normal dispersion curve. Photoluminescence (PL) spectra measured at room temperature revealed that all the films exhibited intense ultraviolet (UV)–green emission from 300 to 650 nm. A minor deep UV emission around 275 nm (∼4.51 eV) was observed for the sample prepared at 700 °C. The intensity of the emission increased markedly when measured at low temperature. The corresponding PL mechanisms were discussed in detail and a schematic diagram was proposed.  相似文献   

6.
This paper presents effect of thickness on the physical properties of thermally evaporated cadmium selenide thin films. The films of thickness 445 nm, 631 nm and 810 nm were deposited employing thermal evaporation technique on glass and ITO coated glass substrates followed by thermal annealing in air atmosphere at temperature 300 °C. The as-deposited and annealed films were subjected to the XRD, UV–Vis spectrophotometer, source meter, SEM and EDS to find the structural, optical, electrical, morphological and compositional analysis respectively. The structural analysis shows that the films have cubic phase with preferred orientation (1 1 1) and nanocrystalline nature. The structural parameters like inter-planner spacing, lattice constant, grain size, number of crystallites per unit area, internal strain, dislocation density and texture coefficient are calculated. The optical band gap is found in the range 1.69–1.84 eV and observed to decrease with thickness. The electrical resistivity is found to increase with thickness for as-deposited films and decrease for annealed films. The morphological studies show that the as-deposited and annealed films are homogeneous, smooth, fully covered and free from crystal defects like pin holes and voids. The grains in the as-deposited films are densely packed, well defined and found to be increased with thickness.  相似文献   

7.
Spray pyrolysis method is used to deposit lanthanum telluride (La2Te3) thin films on glass substrates. The films are deposited by pyrolysis of sprayed solutions of LaCl3 and Te metal dissolved in concentrated HCl and HNO3 along with hydrazine hydrate as a reducing agent. X-ray diffraction analyses show that the films are polycrystalline with La2Te3 phase. The films have a direct optical band gap of 2.2 eV. The films are p-type semiconductors with an electrical resistivity of the order of 104 Ω cm at ambient temperature (27 °C).  相似文献   

8.
《Vacuum》1999,52(1-2):61-66
Polycrystalline PLZT thin films have been grown onto glass slides substrate, from a sintered stoichiometric 9/65/35 commercial target, by using a Nd:YAG laser (1064 nm, 7 ns, 10 Hz). The substrate temperature and oxygen pressure were varied during the deposition, as was the post-deposition annealing temperature in order to achieve stoichiometric films with a perovskite structure and with a composition near the ratio 9/65/35. Perovskite PLZT is formed around the substrate temperature of 500°C and oxygen pressure of ∼0.5 mbar after annealing at 580°C during 90 min. The pyrochlore structure, on the other hand, is always formed in the films during the deposition. However, this structure disappear for annealing temperatures above 550°C, for the films grown at oxygen pressure in the range 0.5–1 mbar and temperature deposition above 450°C. The degree of crystallinity and the structure present in the films is correlated with the deposition conditions. The influence of post-deposition annealing conditions on the formation of perovskite PLZT structure and optical transparency of the films is also discussed.  相似文献   

9.
Effects of the sintering temperature on the microstructure and electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 (BCTZ) lead-free piezoelectric ceramics have been studied, where these ceramics were prepared by the conventional oxide-mixed method at varied sintering temperatures from 1300 °C to 1500 °C. These BCTZ ceramics exhibits a phase transition from a rhombohedral phase to the coexistence of rhombohedral and tetragonal phases with an increase of sintering temperature. With an increase of sintering temperature, their relative density and average grain size gradually increase, and electrical properties are improved greatly. These BCTZ ceramics sintered at ~1440 °C have optimum electrical properties: d33  442 pC/N and kp  48.9%, making it a promising material for lead-free piezoelectric ceramics.  相似文献   

10.
The carbon nitride (CNx) films have been prepared by unbalanced magnetron sputtering (UBMS) at room temperature. The deposited CNx films have been post-annealed at temperatures ranging from 300 °C to 700 °C in increments of 200 °C using rapid thermal annealing (RTA) equipment in vacuum ambient. We investigated the effects of rapid thermal annealing on the structural, surface, and physical properties of CNx films for application of protective coatings. As the result, the increasing annealing temperature led to a decline in physical properties of CNx films such as hardness, elastic modulus, adhesion, frication coefficient, and surface roughness, however it is attributed to the improvement of the residual stress in the film. These results are related to the ordering of sp2 bonded clustering and the increase of disordered graphite domain by the desorption of N contents in the films, Specially, high annealing temperature over 700 °C is attributed to the graphitization of film.  相似文献   

11.
《Optical Materials》2005,27(3):419-423
Nanocrystalline ZnS films have been prepared by sulfidation of the reactive magnetron sputtered ZnO films. The structure, composition and optical properties of the sulfurized ZnO films as a function of the sulfidation temperature (TS) have been systematically studied. It is found that at TS  400 °C ZnO is completely converted to ZnS with the hexagonal structure. The ZnS films have a strongly (0 0 2) preferred orientation and an optical transparency of about 80% in the visible region. In addition, at TS < 444.6 °C (boiling point of sulfur), some residual sulfur decomposed from H2S gas can adhere to the sulfurized film surface while at TS = 580 °C a S/Zn ratio much higher than the ideal stoichiometric proportion of ZnS is obtained for the ZnS films. ZnS films with a minimum XRD FWHM value of 0.165° and a good S/Zn ratio of 0.99 are obtained at a temperature of 500 °C indicating the ZnS films to be suitable for use in the thin film solar cells.  相似文献   

12.
Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform–acetylene–argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, RC, which was varied from 0 to 80%. Deposition rates of 80 nm min? 1 were typical for the chlorinated films. Infrared reflection–absorption spectroscopy revealed the presence of C–Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at ~ 47 at.% for RC  40%. The refractive index and optical gap, E04, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet–visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from ~ 40° to ~ 77°.  相似文献   

13.
Rapid SiO2 atomic layer deposition (ALD) was used to deposit amorphous, transparent, and conformal SiO2 films using tris(tert-butoxy)silanol (TBS) and trimethyl-aluminum (TMA) as silicon oxide source and catalytic agent, respectively. The growth rate of the SiO2 films drastically increased to a maximum value (2.3 nm/cycle) at 200 °C and slightly decreased to 1.6 nm/cycle at 275 °C. The SiO2 thin films have C–H species and hydrogen content (~8 at%) at 150 °C because the cross-linking rates of SiO2 polymerization may reduce below 200 °C. There were no significant changes in the ratio of O/Si (~2.1) according to the growth temperatures. On the other hand, the film density slightly increased from 2.0 to 2.2 although the growth rate slightly decreased after 200 °C. The breakdown strength of SiO2 also increases from 6.20 ± 0.82 to 7.42 ± 0.81 MV/cm. These values suggest that high cross-linking rate and film density may enhance the electrical property of rapid SiO2 ALD films at higher growth temperature.  相似文献   

14.
We report, the effect of air annealing on solar conversion efficiency of chemically grown nanostructured heterojunction thin films of CdS/CuInSe2, such 100, 200 and 300 °C air annealed thin films characterized for physicochemical and optoelectronic properties. XRD pattern obtained from annealed thin films confirms tetragonal crystal geometry of CuInSe2 and an increase in average crystallite size from 16 to 32 nm. An EDAX spectrum confirms expected and observed elemental composition in thin films. AFM represents high energy induced grain growth and agglomeration due to polygonization process. Increase in optical absorbance strength and decrease in energy band gap from 1.36 to 1.25 eV is observed. Increase in charge carrier concentration from 2 × 1016 to 8 × 1017 cm?3 is observed as calculated from Hall effect measurements and an enhancement in solar conversion efficiency from 0.26 to 0.47% is observed upon annealing.  相似文献   

15.
Graphene (GN)-based composite paper containing 10 wt.% cellulose nanowhiskers (CNWs) exhibiting a tensile strength of 31.3 MPa and electrical conductivity of 16 800 S/m was prepared by ultrasonicating commercial GN powders in aqueous CNWs suspension. GN/CNWs freestanding paper was applied to prepare the sandwiched films by dip coating method. The sandwiched films showed enhanced tensile strength by over two times higher than the neat resins. The moduli of the sandwiched films were around 300 times of the pure resins due to the high content of GN/CNWs paper. The glass transition temperature of the sandwiched films increased from 51.2 °C to 57.1 °C for pure epoxy (E888) and SF (E888), and 49.8 °C to 64.8 °C for pure epoxy (650) and SF (650), respectively. The bare conductive GN/CNWs paper was well protected by the epoxy resin coating, which is promising in the application as anti-static materials, electromagnetic interference (EMI) shielding materials.  相似文献   

16.
Bi2S3 thin films were grown by successive ionic layer adsorption and reaction method (SILAR) onto the glass substrates at room temperature. The as prepared thin film were annealed at 250 °C in air for 30 min. These films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrical measurement systems. The X-ray diffraction patterns reveal that Bi2S3 thin film have orthorhombic crystal structure. SEM images showed uniform deposition of the material over the entire glass substrate. The optical energy band gap observed to be decreased from 1.69 to 1.62 eV for as deposited and annealed films respectively. The IV measurement under dark and illumination condition (100 W) show annealed Bi2S3 thin film gives good photoresponse as compared to as deposited thin film and Bi2S3 thin film exhibits photoconductivity phenomena suggesting its useful in sensors device. The thermo-emf measurements of Bi2S3 thin films revealed n-type electrical conductivity.  相似文献   

17.
Ultrathin bismuth titanate films (Bi2Ti2O7, 5–25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 °C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 °C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be ~3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions.  相似文献   

18.
Zinc oxide thin films have been obtained by pulsed laser ablation of a ZnO target in O2 ambient at a pressure of 0.13 Pa using a pulsed Nd:YAG laser. ZnO thin films deposited on Si (1 1 1) substrates were treated at annealing temperatures from 400 °C up to 800 °C after deposition. The structural and optical properties of deposited thin films have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra, resistivity and IR absorption spectra. The results show that the obtained thin films possess good single crystalline with hexagonal structure at annealing temperature 600 °C. Two emission peaks have been observed in photoluminescence spectra. As the post-annealing temperature increase, the UV emission peaks at 368 nm is improved and the intensity of blue emission at 462 nm decreases, which corresponds to the increasing of the optical quality of ZnO film and the decreasing of Zn interstitial defect, respectively. The best optical quality for ZnO thin films emerge at post-annealing temperature 600 °C in our experiment. The measurement of resistivity also proves the decrease of defects of ZnO films. The IR absorption spectra of sample show the typical Zn–O bond bending vibration absorption at wavenumber 418 cm−1.  相似文献   

19.
In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ~18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.  相似文献   

20.
《Vacuum》2008,82(11-12):1439-1442
W–S–C films were deposited by magnetron sputtering in an Ar atmosphere with a Ti interlayer. A carbon target with several pellets of WS2 incrusted in the zone of the preferential erosion was used. The number of pellets was changed to modify the carbon content in the films, which varied from 29 up to 70 at%. Doping W–S films with carbon led to a substantial increase of the hardness in the range 4–10 GPa; the maximum of hardness was obtained for coatings with the carbon content of 40 at%. X-ray diffraction (XRD) patterns showed that there was a loss of crystallinity with the increase of the carbon content in the film.The coatings were tested by pin-on-disk from room temperature (RT) up to 400 °C. At RT, the friction coefficient was in the range 0.2–0.30. At temperatures higher than 100 °C, the friction is below 0.05 for all compositions. The tribological behavior of the coatings with increasing temperatures depended on the films carbon content. For low-carbon content up to 40%, the wear rate was almost independent of the temperature up to 300 °C, while it increased dramatically in the case of the coatings with high-carbon content. In general, the limiting temperature for W–S–C coatings is 400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号