首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
分别利用失稳图和功率耗散图确定BT25钛合金失稳变形组织和动态再结晶变形组织的热力参数边界条件,并将其输入到Deform-3D有限元软件中,使加工图技术与有限元技术能够进行有效结合。利用二次开发后的软件对BT25钛合金在变形温度为950~1100 ℃和应变速率0.001~1 s-1的条件下进行失稳变形组织和动态再结晶行为的模拟和预测,并通过对比金相组织,验证了该模拟结果的可靠性。结果表明,流动应力随变形温度的升高或应变速率的降低而降低;失稳变形组织集中在低温、高应变速率区域;高温和低应变速率均有利于动态再结晶(DRX)行为;微观组织的观察结果与模拟预测的结果吻合较好,说明本研究提出的加工图技术与有限元技术相结合的方法对模拟与预测金属锻造过程中的失稳变形组织和DRX行为是可行的。  相似文献   

2.
通过热模拟压缩实验获得的应力应变曲线表明粉末TC4钛合金在温度为850~950℃,应变速率为0.1~10s-1范围内变形时具有加工硬化和连续的动态软化特性,建立了材料本构方程,很好的描述了粉末TC4钛合金的流变行为。进一步对动态软化行为进行了分析,并计算了各种因素对软化的影响程度。结果表明:变形温度越低,应变速率越小,流动软化程度越大;在应变速率为1s-1和10s-1时,主要是变形热导致流动软化;当应变速率为0.1s-1,温度为850℃和900℃时,有变形热、动态相变和α相形态演化三种软化因素,且温度越低,α相形态演化导致的软化占比越大,温度增加,动态相变软化所占比例增加;当应变速率为0.1s-1,变形温度为950℃时,有变形热和动态相变两种软化因素,变形量增加,动态相变软化所占比例增大。  相似文献   

3.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

4.
采用Gleeble-3800热压缩实验机研究了新型Ni-Cr-Co基合金在1050~1250 ℃、0.001~1 s-1条件下的热变形行为,并利用EBSD探讨了变形温度和应变速率对合金组织演变和动态再结晶形核机制的影响。结果表明,流变应力随变形温度的升高而降低,而随应变速率的增大而增加。基于流变应力曲线,建立合金的Arrhenius本构方程和热加工图,得到热变形激活能为520.03 kJ/mol,最佳热加工区间为1175~1250 ℃、0.006~1 s-1,该区域最大功率耗散效率为45%。动态再结晶分数随变形温度的升高和应变速率的降低而增加,且动态再结晶过程形成均匀细小的等轴晶粒以及∑3孪晶界。动态再结晶形核主要以晶界“弓出”为特征的不连续动态再结晶机制主导。低温高应变速率下,持续亚晶转动诱导的连续动态再结晶作为辅助形核机制发挥作用。  相似文献   

5.
在室温下对挤压态AZ31合金沿棒材径向进行拉伸变形(RDT试样)和沿挤压方向进行压缩变形(EDC试样),2种变形应变速率均为10-4 s-1。采用金相显微镜(OM)和背散射电子衍射(EBSD)研究了变形过程中合金的孪生行为。结果表明:拉伸孪晶影响了合金的屈服点,EDC试样的屈服点为139 MPa,高于RDT试样的屈服点88 MPa。2种变形应力状态下,随应变增加,合金的应变硬化速率都是先快速下降,但EDC试样的硬化速率随后明显上升,并一直持续到断裂,而RDT试样则几乎保持稳定的硬化速率。EDC试样硬化速率的升高与合金中产生大量的拉伸孪晶以及孪晶织构诱导的滑移行为有关。基于EBSD测试结果,给出了一种计算晶粒内孪晶体积分数的方法,得出RDT试样在应变为0.04时,(0002)晶粒中拉伸孪晶体积分数约为45%。  相似文献   

6.
将工业纯钛(CP-Ti)板轧制至不同程度,随后进行退火以及进行20%的再轧制。通过电子背散射衍射(EBSD)对合金微观组织的变化进行表征。重新轧制后,{112}<23>压缩孪晶和{102}<101>拉伸孪晶产生。可以观察到孪晶的层状结构,这是由变形孪晶的缠结以及二次和三次孪晶的产生引起的。平均晶粒尺寸和孪晶量之间没有简单的关联。0.5 h退火样品中的晶粒尺寸随其预变形程度的增加而显著减小。重新轧制倾向于使晶格的重新取向更接近法线方向。虽然织构变化和孪晶体积分数很小,但平行于RD方向的{100}纤维织构仍然保留。  相似文献   

7.
本文通过高温热压缩试验研究Ti-555钛合金热变形过程中变形温度、应变速率对流变应力的影响,采用Arrhenius双曲正弦函数模型推导出Ti-555本构方程,并依据动态材料模型建立了ε=0.6时的热加工图。结果表明,Ti-555钛合金流变应力对应变速率和变形温度较为敏感,热变形时随变形温度升高或应变速率降低,流变应力下降。根据热加工图确定了两个热加工安全区参数为(1)变形温度为850~950 ℃、应变速率为0.6~10 s-1;(2)变形温度为950~1150 ℃、应变速率为0.36~0.9 s-1。  相似文献   

8.
对具有片层状初始组织的Ti600合金的热变形行为进行了研究。变形温度范围为800~960 ℃,应变速率范围为10-3~1 s-1。随后提出了应变硬化指数(n)来表征流动软化和加工硬化之间的竞争。并且通过分析流变曲线和观察显微组织研究了该合金的软化行为。结果表明,变形参数对Ti600合金的流变行为有显著影响。当变形超过峰值应变之后,n值逐渐降低,动态软化过程开始占主导地位。微观组织分析表明:热变形过程中,α相的弯曲、破碎、动态回复和动态再结晶行为是造成Ti600合金软化的主要原因。最后基于实验数据,建立了3种本构模型,分别是应变补偿Arrhenius模型、Hensel-Spittel模型和修正的Arrhenius模型,来表征Ti600合金的流变行为。将3种模型预测的流变应力与实验结果进行比较,并计算其相关系数值和平均相对误差值来评估模型的准确性。3种模型的相关系数值分别为0.965、0.989和0.997,平均相对误差值分别为12.86%,9.74%和3.26%。这些结果表明,这3种模型都可以描述Ti600合金的流变行为,而修正的Arrhenius模型具有最高的预测精度。  相似文献   

9.
在变形温度600~950℃,应变速率0.001~10s-1条件下,采用Thermecmaster-Z型热加工模拟试验机对Ti60合金进行等温恒应变速率压缩实验。通过分析流动应力行为,计算应变速率敏感指数m和应变硬化指数n,并综合考虑加工图和变形微观组织来研究该合金的热变形行为,得到优化的工艺参数范围。研究结果表明,Ti60合金的流动应力-应变曲线在不同热力参数条件下分别呈现流动稳态型和流动软化型。应变速率敏感指数m随着变形温度升高和应变速率降低而增大。应变硬化指数n随着变形温度升高而减小;随着应变速率的增加在低应变速率(0.001~0.1s-1)区间增大,在高应变速率(1~10s-1)区间减小;随着应变的增加在高温段(800~950℃)的低应变速率(0.001~0.1s-1)区间较缓慢地减小,在高温段(800~950℃)的高应变速率(1~10s-1)区间以及低温段(600~750℃)的所有应变速率(0.001~10s-1)区间较明显地减小。Ti60合金存在两个功率耗散效率峰值区域,其对应的热力参数窗口分别为温度725~875℃,应变速率≤0.003s-1和温度875~938℃,应变速率≤0.04s-1。从流动应力行为、应变速率敏感指数m、应变硬化指数n以及加工图综合考虑,Ti60合金的最佳热加工工艺参数为:温度800~875℃,应变速率0.001~0.003s-1,或温度875~938℃,应变速率0.001~0.04s-1。  相似文献   

10.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

11.
对经轻气炮预冲击的Ti6321钛合金双态组织样品进行准静态压缩和动态压缩再加载试验,探究冲击后其力学性能的变化。利用光学显微镜(OM)和透射电子显微镜(TEM)对其微观组织演化进行观察并分析。结果表明,经预冲击后的Ti6321钛合金的静动态屈服强度、平均流变应力较原始样品有所升高,但断裂应变、冲击吸收功明显下降,且经过预冲击的样品经动态再加载后更易出现绝热剪切破坏。TEM结果表明,经轻气炮预冲击过后的样品内部有孪晶生成,从而导致了Ti6321钛合金表现出冲击波强化效应。  相似文献   

12.
A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of a Ti alloy (Ti–1.1Mo–5.2Zr–2.9Al–0.35Fe–0.05N–0.20 O–0.02H in wt.%) deformed at strain rates ranging from 8 × 102 s?1 to 8 × 103 s?1 and temperatures between 25 °C and 900 °C. In general, the results indicate that the mechanical behaviour and microstructural evolution of the alloy are highly sensitive to both the strain rate and the temperature conditions. The flow stress curves are found to include both a work-hardening region and a work-softening region. The strain rate sensitivity parameter, β, increases with increasing strain and strain rate, but decreases with increasing temperature. The activation energy varies inversely with the flow stress, and has a low value at high deformation strain rates or low temperatures. The microstructural observations reveal that the strengthening effect evident in the deformed alloy is a result primarily of dislocations and the formation of α phase. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. Additionally, the square root of the dislocation density varies linearly with the flow stress. Correlating the mechanical properties of the current Ti alloy with the TEM observations, it is concluded that the precipitation of α phase dominates the fracture strain. TEM observations reveal that the amount of α phase increases with increasing temperature below the β transus temperature. The maximum amount of α phase is formed at a temperature of 700 °C and results in the minimum fracture strain under the current loading conditions.  相似文献   

13.
采用Gleeble-3500热模拟试验机对在变形温度500~650℃和应变速率0.001~1 s-1条件下的60NiTi合金进行热压缩变形,分析其热变形行为和显微组织,建立变形本构模型,绘制热加工图。结果表明,当压缩温度升高或应变速率降低时,峰值应力减小。合金的热变形激活能为327.89 k J/mol,热加工工艺参数为变形温度600~650℃和应变速率0.005~0.05 s-1。当变形温度升高时,合金的再结晶程度增大;当应变速率增大时,位错密度和孪晶数量增大,Ni3Ti相易于聚集;Ni3Ti析出相有利于诱发合金基体的动态再结晶。动态回复、动态再结晶和孪生是60NiTi合金热变形的主要机制。  相似文献   

14.
The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression tests on a Gleeble–3800 thermomechanical simulator. The constitutive equation describing the hot deformation behavior was obtained and a processing map was established at the true strain of 0.7. The microstructure was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) technique. The results show that the flow stress increases with increasing strain rates, and decreases with increasing experimental temperatures. The calculated apparent activation energy (167 kJ/mol) is close to that of self-diffusion in β titanium. The processing map and microstructure observation exhibit a dynamic recrystallization domain in the temperature range of 900–1000 °C and strain rate range of 0.1–1 s−1. An instability region exists when the strain rate is higher than 1.7 s−1. The microstructure of beta C titanium alloy can be optimized by proper heat treatments after the deformation in the dynamic recrystallization domain.  相似文献   

15.
《Intermetallics》2000,8(7):823-830
In this study a two-phase γ-TiAl based alloy with near gamma microstructure was deformed in uniaxial compression at room temperature. The deformation experiments were carried out at a strain rate of 2×10−4 s−1. The acoustic emission during deformation was monitored continuously using a root mean square voltmeter. Different annealing experiments between deformation cycles combined with transmission electron microscopy investigations revealed the formation of mechanical twins as the decisive mechanism for the acoustic emission.  相似文献   

16.
《Intermetallics》2000,8(5-6):559-562
Superplastic behavior under the conditions of a temperature range from 850 to 1075°C and strain rates varying from 8×10−5 to 1×10−3 s−1 was investigated for Ti–33Al–3Cr–0.5Mo (wt%) alloy with a very fine grain size obtained by the multi-step thermal mechanical treatment. The results show that the TiAl-based alloy with a hot-deformed fine grain size possesses good superplasticity. It exhibits a strain rate sensitivity coefficient of 0.9 at a strain rate of 3×10−5 s−1 and temperature from 1000 to 1075°C. Moreover, the strain rate sensitivity coefficient is stable during the hot deformation, and a tensile elongation of 517% was obtained at 1075°C and a strain rate of 8×10−5 s−1. The superplastic behavior of the present fine-grained TiAl-based alloy can be explained by the local strain hardening and high m value during the tensile deformation. Microstructure evolution in the superplastic deformation was also discussed.  相似文献   

17.
The high temperature deformation behaviors of Ti-45Al-2Nb-1.5V-1Mo-Y alloy were investigated in the temperature range 1100–1250 °C and the strain rate range 0.001–1.0 s?1. The true stress-strain curves exhibit typical work hardening and flow softening features; The peak stress of current alloy decreases with increasing temperature and decreasing strain rate, which can be represented by a hyperbolic sine equation using the Zener-Hollomon parameter. Thanks to the additions of element Mo and V, and the resulting B2 phase, this alloy possesses a low activation energy value of 370 kJ/mol, as well as a wide processing window of temperature above 1150 °C and strain rate under 0.1 s?1. The deformed microstructure consists of dominated DRX areas plus several remnant lamellar colonies; the inhomogeneous deformation microstructure is ascribed to the anisotropic plastic flow of lamellar colonies. By TEM observation and EBSD analysis further, the deformation mechanism of current alloy is concluded as dislocation slip and mechanical twins.  相似文献   

18.
The hot deformation behavior of T4-treated ZK60 magnesium alloy was investigated in a compression test conducted with a thermo-mechanical simulator at a temperature range of 523 K to 673 K and a strain rate of 0.001 s?1 to 1 s?1. The results show that the flow stress increases as the deformation temperature decreases and the strain rate increases. Strain-dependent constitutive relationships were developed using regression method and artificial neural network, and good agreements between the experimentally measured values and the predicted ones were achieved. The work hardening analysis and onset of dynamic recrystallization (DRX) were investigated. The processing map reveals a domain of DRX at the temperature range of 620–673 K and strain rate range of 0.001–0.01 s?1, with its peak efficiency of 32% at 623 K and 0.001 s?1, which are the optimum values of the parameters for hot working of the T4-treated ZK60 alloy. The strain level has a great effect on the processing maps and lower temperatures and higher strain rates should be avoided during hot working processes. DRX model indicates that DRX of ZK60 alloy is controlled by the rate of nucleation, which is slower than the rate of migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号