共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fusion Engineering and Design》2014,89(7-8):882-889
One important objective of the EU fusion roadmap Horizon 2020 is to lay the foundation of a Demonstration Fusion Power Reactor (DEMO) to follow ITER, with the capability of generating several 100 MW of net electricity to the grid and operating with a closed fuel-cycle by 2050. This is currently viewed by many of the nations engaged in the construction of ITER as the remaining crucial step towards the exploitation of fusion power. This paper outlines the DEMO design and R&D approach that is being adopted in Europe and presents some of the preliminary design options that are under evaluation as well as the most urgent R&D work that is expected to be launched in the near-future. The R&D on materials for a near-term DEMO is discussed in detail elsewhere. 相似文献
2.
D. Demange C.G. Alecu N. Bekris O. Borisevich B. Bornschein S. Fischer N. Gramlich Z. Köllö T.L. Le R. Michling F. Priester M. Röllig M. Schlösser S. Stämmler M. Sturm R. Wagner S. Welte 《Fusion Engineering and Design》2012,87(7-8):1206-1213
Safe, reliable, and efficient tritium management in the breeder blanket will have to face unprecedented technological challenges. Beside the efficiency for tritium recovery from the breeder blanket (Tritium Extraction (TES) and Coolant Purification Systems (CPS)), the accuracy for tritium tracking between the inner and the outer fuel cycle must also be demonstrated. This paper focuses on the recent R&D carried out at the Tritium Laboratory Karlsruhe to tackle these issues. For ITER, the recently consolidated TES and CPS designs comprise adsorption columns and getter beds operated in semi-continuous mode. Different approaches for the tritium accountancy stage (TAS) have been evaluated. Balancing static (batch-wise gas collection at the TBM outlets and the tritium plant) or dynamic (in/on-line) approaches with respect to the expected analytical performances and integration issues, the first conceptual design of the TAS for EU TBMs is presented. For DEMO, the overall strategy for tritium recovery and tracking has been revisited. The necessity for on-line real-time tritium accountancy and improved process efficiency suggest the use of continuous processes such as permeator and catalytic membrane reactor. The main benefits combining the PERMCAT process with advanced membranes is discussed with respect to process improvements and facilitated accountancy using spectroscopic methods. 相似文献
3.
An international joint project of fusion experimental reactor, the ITER (International Thermonuclear Experimental Reactor), is reviewed in view of long-range fusion energy research and development (R&D). Its purpose, goal, evolution, and the present construction status are briefly reviewed. While the ITER is a core machine in the present stage, generation of electricity is a role of the next-step fusion demonstration power plant “DEMO.” The status of designs and technology R&D for DEMO are also reviewed. 相似文献
4.
《中国原子能科学研究院年报》2018,(0)
正1Introduction As a new type of fuel rod composes of inner and outer claddings and annular fuel pellet,the annular fuel has a coolant channel inside the fuel rod,which increases the heat transfer area,power density,and the economics of nuclear power compared with the traditional fuel rod.Lower fuel temperature and stored energy are features of annular fuel,which can reduce fission gas released 相似文献
5.
6.
Safe, reliable and efficient tritium management in the breeder blanket faces unique technological challenges. Beside the tritium recovery efficiency in the tritium extraction and coolant purification systems, the tritium tracking accuracy between the inner and outer fuel cycle shall also be demonstrated. Furthermore, it is self-evident that safe handling and confinement of tritium need to be stringently assured to evolve fusion as a reliable technique. The present paper gives an overview of tritium management in breeder blankets. After a short introduction into the tritium fuel cycle and blanket basics, open tritium issues are discussed, thereby focusing on tritium extraction from blanket, coolant detritiation and tritium analytics and accountancy, necessary for accurate and reliable processing as well as for book-keeping. 相似文献
7.
《中国原子能科学研究院年报(英文版)》2017,(0)
<正>The parallel plate avalanche counters(PPAC)has very good time response property and is very suitable for fission fragment measurement in high counting rate condition.In this work,a PPAC with 8layers was developed.Its inner structure can be seen in Fig.1.The mass of sample was increased by increasing the amount of layers.The background of scattering neutron 相似文献
8.
《Fusion Engineering and Design》2014,89(7-8):1341-1345
This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R&D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM.The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R&D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R&D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine. 相似文献
9.
Seungyon Cho Mu-Young Ahn In-Keun Yu Yi-Hyun Park Duck Young Ku Sang-Jin Lee Han-Ki Yoon Tae-Gyu Kim 《Fusion Engineering and Design》2012,87(5-6):386-391
Several R&Ds are being performed for Korean helium cooled solid breeder (HCSB) test blanket module (TBM) in the field of hydrogen isotopes permeation characteristics measurement in the helium purge line, joining technologies of structural materials, breeder pebble materials development, and the measurement of pebble bed characteristics. Electron beam welding for reduced activated ferritic–martensitic (RAFM) steel is evaluated to find optimal welding conditions. Also, a hydrogen permeation measurement apparatus is newly installed for the evaluation of the permeation barrier characteristics of stainless steel and RAFM steels. Two fabrication methods of lithium orthosilicate pebbles are investigated using slurry droplet methods. As methods of silicon carbide coating on the graphite pebble, microwave coating and chemical vapor deposition coating are evaluated. Two apparatuses are established to assess the thermo-mechanical properties of graphite and breeder pebble beds. The current status of R&D activities on these areas is introduced and the main progresses are addressed in this paper. 相似文献
10.
The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels’ fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI).To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350-750 °C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 °C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (∼400 MPa) and a large increase in DBTT (up to 230 °C) for specimens irradiated at 383 °C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 °C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide dispersions. 相似文献
11.
The design of high current balance reactors used in the ITER DC testing platform is presented,which is verified by simulations with finite element method software,and the reactors are fabricated and tested according to the design output.These reactors are chosen as multilayer multi-turn structure and cooled by water.The multilayer multi-turn structure is usually selected by some high voltage reactors,but is seldom used in high current situations.The analysis and testing results indicate that the multilayer multi-turn structure is also feasible for high current reactors with many advantages,and is of considerable significance to similar applications. 相似文献
12.
《Journal of Nuclear Science and Technology》2013,50(4):510-515
This paper presents briefly the safety approach as well as the R&D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R&D. B) Strategy and roadmap in support of the R&D for future SFRs. This section describes the R&D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype. 相似文献
13.
《Fusion Engineering and Design》2014,89(7-8):1137-1143
Korea plans to test a Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) in ITER. The HCCR TBM adopts a four sub-module concept considering the fabricability and the transfer of irradiated TBM for post irradiation examination. Each sub-module has seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebble bed packed tritium breeder layers, and a reflector layer packed with graphite pebbles. Based on this configuration, neutronic and electromagnetic calculations were performed and their results were applied for the conceptual design of HCCR TBM that considers manufacturing feasibility. Also, a design and safety analysis of HCCR Test Blanket System (TBS) was performed using integrated design tools modifying nuclear system codes for helium coolant and tritium behavior evaluation. The Advanced Reduced Activation Alloy (ARAA) is being developed as a structural material. A total of 73 candidate ARAA alloys were designed and their out-of-pile performance was evaluated. The graphite pebbles as the neutron reflector were fabricated by using mechanical machining and grounding method with the surface coated with SiC. The hydrogen permeation characteristics of structural materials were evaluated using the Hydrogen PERmeation (HYPER) facility. The recent design and R&D progress on these areas are addressed in this paper. 相似文献
14.
《等离子体科学和技术》2015,17(7):612-616
Electrical joints are critical components of the PF coil in the tokamak.serving as an electric and coolant transfer between adjacent conductors.The technologies and tooling used for joint manufacture are great challenges in coil fabrication,including termination box and cover manufacturing,jacket removal of the conductor,petals drawing apart and reformation,nickel coating removal and tin plating on the cable,compaction of the cable into the termination,final machining of the termination,etc.This paper mainly focuses on the solution of technical issues,based on previous RD activities of joint.Meanwhile,a detailed manufacture plan has been confirmed.The technologies and tooling also can be used as reference for the electrical joint manufacture for PF coils and other large-scale coils. 相似文献
15.
In India, development of Lead–Lithium Ceramic Breeder (LLCB) blanket is being performed as the primary candidate of Test Blanket Module (TBM) towards DEMO reactor. The LLCB TBM will be tested from the first phase of ITER operation (H-H phase) in one-half of an ITER port no. 2. The Indian TBM R&D program is focused on the development of blanket materials and critical technologies: structural material (IN-RAFMS), breeding materials (Pb–Li, Li2TiO3), development of technologies for Lead–Lithium cooling system (LLCS), helium cooling system (HCS), tritium extraction system (TES) and TBM related fabrication technologies. This paper will provide an overview of LLCB TBM R&D activities under progress in India. 相似文献
16.
17.
X. Ji Y.T. Song S.T. Wu G. Shen Z. Wang L. Cao Z. Zhou X. Liu X. Peng C. Wang S. Wang N. Zhu P. Zhang J. Wu X. Gong B. Shen D. Gao P. Fu J. Li 《Fusion Engineering and Design》2012,87(7-8):961-964
The passive stabilization loop (PSL) is part of the plasma stabilization system built in the EAST. Its purpose is to provide passive feedback control of the plasma vertical instability on short time scales. To accommodate with the new stage for high performance plasma and enhance the control of vertical stabilization in EAST, the project of PSL has been carried out. The eddy currents are induced by the vertical displacement events (VDEs) and disruption. The distribution of the eddy currents depend on the structure of the PSL and the formation of the induction. The global model is created and meshed by the ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The stress and the strain caused by the eddy currents and the magnetic field are calculated. To decrease the resistance of the joint and enhance anti-corrosion of the joint surface, the silvered craft is used. In the experiment of test model, the resistance is decreased to half after silvered with the same matrix material and under the same preload. The PSL is insulated from the vacuum vessel at the supports of passive stabilizers. The insulation structure is designed and tested with ceramic material. The PSL is designed, fabricated and assembled with the total resistance 150 μΩ. It can supply passive feedback control to the plasma by the eddy currents induced by the VDEs, which could enhance the vertical placement control of plasma. 相似文献
18.
S. Sadakov S. Khomiakov B. Calcagno Ph. Chappuis G. Dellopoulos V. Kolganov M. Merola I. Poddubnyi R. Raffray J.J. Raharijaona M. Ulrickson A. Zhmakin 《Fusion Engineering and Design》2013,88(9-10):1853-1857
Main function of the ITER blanket system [1], [2], [3] is to shield the vacuum vessel (VV) from nuclear radiation and thermal energy coming from the plasma. Blanket system consists of discrete blanket modules (BM). Each BM is composed of a first wall panel and a shield block (SB). The shield block is attached to the VV by means of four flexible supports and three or four shear keys, through key pads. All listed supports do have parts with ceramic electro-insulating coatings necessary to exclude the largest loops of eddy currents and restrict EM loads. Electrical connection of each SB to the VV is through two elastic electrical straps. Cooling water is supplied to each BM by one coaxial water connector. This paper summarizes the recent evolution of the blanket attachment system toward design solutions compatible with design loads and numbers of load cycles, and providing sufficient reliability and durability. This evolution was done in a frame of pre-defined external interfaces. The ongoing supporting R&D is also briefly described. 相似文献
19.
《Fusion Engineering and Design》2014,89(7-8):1107-1112
The Indian LLCB TBM, currently under development, will be tested from the first phase of ITER operation (H–H phase) in one-half of the ITER port no-2. The present LLCB TBM design has been optimized based on the neutronic as well as thermal hydraulic analysis results. LLCB TBM R&D activities are primarily focused on (i) development of technologies related to various process systems such as Helium, Pb–Li liquid metal and tritium, (ii) development and qualification of blanket materials viz., structural material (IN-RAFMS), tritium breeding materials (Pb–Li, and Li2TiO3), (iii) development and qualification of fabrication technologies for TBM system. The present status of LLCB TBM design activities as well as the progress made in major R&D areas is presented in this paper. 相似文献
20.
K.M. Feng C.H. Pan G.S. Zhang T.Y. Luo Z. Zhao Y.J. Chen Y.J. Feng X.F. Ye G. Hu K.H. He R.W. Niu Z.X. Li P.H. Wang B. Xiang L. Zhang Q.J. Wang F.C. Zhao Q.X. Cao M.C. Zhang 《Fusion Engineering and Design》2012,87(7-8):1138-1145
The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. Current progress on the design and R&D for Chinese helium-cooled ceramic breeder TBM (CN HCCB TBM) in China is presented. The main updated design and related R&D of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being carried out. Recent status of the components and fabrication technology development is also reported. The neutron multiplier Be pebbles, tritium breeder Li4SiO4 pebbles, and structure material CFL-1 are being prepared in the laboratory scale. The fabrication of 1/3 sized mock-up and construction of a He test loop are being carried out. The key technology development is proceeding to the large scale mock-up fabrication and demonstration tests toward on ITER testing. 相似文献