首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatigue strength of an annealed Ti-15Zr-4Nb-4Ta alloy at 1 × 108 cycles was approximately 730 MPa. The fatigue strength of its alloy was much improved following an ageing treatment after a solution treatment. The tension-to-tension fatigue strengths of annealed Ti-6Al-4V, V-free Ti-6Al-7Nb, Ti-6Al-2Nb-1Ta, and Ti-15Mo-5Zr-3Al alloys at 1 × 108 cycles were approximately 685, 600, 700, and 350 MPa, respectively. The ratios of fatigue strength at 1 × 108 cycles to ultimate tensile strength for the α- and (α + β)-type Ti materials were higher than 65%.  相似文献   

2.
Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4 V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4 V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4 V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4 V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4 V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4 V alloy as the material base for mini-implants.  相似文献   

3.
The present paper is aimed at investigating the effect of shot peening on the high and very-high cycle plain fatigue resistance of the Al-7075-T651 alloy. Pulsating bending fatigue tests (R = 0.05) were carried out on smooth samples exploring fatigue lives comprised between 105 and 108 cycles. Three peening treatments were considered to explore different initial residual stress profiles and surface microstructural conditions. An extensive analysis of the residual stress field was carried out by measuring with the X-ray diffraction (XRD) technique the residual stress profile before and at the end of the fatigue tests. Fatigue crack initiation sites were investigated through scanning electron microscopy (SEM) fractography. The surface morphology modifications induced by shot peening were evaluated using an optical profilometer. The influence of surface finishing on the fatigue resistance was quantified by eliminating the surface roughness in some peened specimens through a tribofinishing treatment. The capability of shot peening to hinder the initiation and to retard the subsequent propagation of surface cracks is discussed on the basis of a model combining a multiaxial fatigue criterion and a fracture mechanics approach.  相似文献   

4.
The effects of compressive residual stress, surface roughness, microstructure hardening induced by shot peening (SP) on the fretting fatigue (FF) resistance of Ti811 titanium alloy at elevated temperature were evaluated. The results show that SP improves the FF resistance of Ti811 alloy at 350 °C, but decreases the resistance at 500 °C. Compressive residual stress is the predominant factor in improving the FF resistance of the alloy at 350 °C. Compressive residual stress induced by SP arrests crack growth. Microstructure hardening due to SP has a minor effect on FF resistance. Surface roughening induced by SP is detrimental to the FF resistance of the alloy at both 350 and 500 °C, as microcracks initiate easily in the roughened surface under these conditions.  相似文献   

5.
The effect of laser cladding on the fatigue and fracture behavior under variable amplitude loading is a major consideration for the development of laser cladding process to repair high value complex fatigue critical aerospace military components, that otherwise would be replaced. The selected material, AerMet®100, is a widely used ultra-high strength steel in current and next generation aerospace components, such as landing gears. Laser cladding was performed using AerMet® 100 powder on AerMet® 100 fatigue substrate specimens. No micro-cracking and very little porosity were observed in the clad layer. The fatigue tests were performed under variable amplitude loading with a maximum stress of 1000 MPa. Residual stress, microstructure, and hardness, was also evaluated. Both the as-clad and post-heat treated (PHT) samples were compared to a baseline sample with an artificial notch to simulate damaged condition. Results show that laser cladding significantly improves fatigue life, as compared to the baseline sample with a notch. However, the fatigue life of the as-clad sample is lower as compared to a baseline sample without a notch. A compressive residual stress of 300–500 MPa was observed in the clad region and HAZ. The fracture modes in the as-clad specimen consisted mainly of tearing topology surface and some regions of decohesive rupture through the columnar austenite grains. The PHT condition however was not effective in improving the fatigue life. The fracture modes showed mainly decohesive rupture, and as a consequence, reduced the fatigue life.  相似文献   

6.
It was shown that introducing an ultrafine-grained (UFG) microstructure in pure metals as well as some alloys leads to strongly enhanced fatigue properties. The cyclic deformation behavior of UFG Ti-6Al-4V ELI (extra low interstitials) alloy is studied by both strain and stress controlled fatigue tests using plastic strain amplitudes between 3 × 10?4 and 5 × 10?3 and stress amplitudes ranging from 550 to 670 MPa. The UFG microstructures were obtained by equal channel angular pressing (ECAP) with different number of passes followed by a subsequent thermomechanical treatment (TMT). When compared to the conventional grain (CG) size counterpart, the UFG alloy exhibited a pronounced enhancement in the fatigue life in the S–N (Wöhler) diagram. It was also shown that additional UFG processing prior to TMT did not result in any further improvement of the fatigue resistance. Furthermore, microstructural investigations revealed a high cyclic stability of the UFG microstructure.  相似文献   

7.
T. Yuri  Y. Ono  T. Ogata 《低温学》2006,46(1):30-36
Notch effects on the high-cycle fatigue properties of the forged Ti-6Al-4V ELI alloy at cryogenic temperatures were investigated. Also, the high-cycle fatigue data were compared with the rolled Ti-5Al-2.5Sn ELI alloy. The one million cycles fatigue strength (FS) of the smooth specimen for the forged Ti-6Al-4V ELI alloy increased with a decrease of test temperature. However, the FS of each notched specimen at 4 K were lower than those at 77 K. On the other hand, the FS of the smooth and the notched specimens for the forged Ti-6Al-4V ELI alloy at 4 K were lower than those for the rolled Ti-5Al-2.5Sn ELI alloy. This is considered to be the early initiation of the fatigue crack in the forged Ti-6Al-4V ELI alloy compares with the forged Ti-5Al-2.5Sn ELI.  相似文献   

8.
Nanocomposite coatings are novel, important systems composed of two or more nanocrystalline, or nanocrystalline and amorphous, phases. Such coatings offer a possibility of tailoring the coating microstructure and achieving new improved properties of coated materials. In this work a duplex surface treatment, consisting of an oxygen diffusion treatment and deposition of low friction nanocomposite nc-MeC/a-C (Me = transition metal, Ti, W or Cr) coatings, was applied for improvement of the Ti-6Al-4V alloy properties. The coatings composed of nanocrystallites of transition metal carbides (TiC or CrxCy or WC) embedded in hydrogen-free amorphous carbon (a-C) matrix were deposited onto the surface of an oxygen hardened Ti-6Al-4 V alloy substrate by means of a simple DC magnetron sputtering. A nano/microstructure of the substrate material and coatings has been examined by scanning- and transmission electron microscopy complemented with the results of X-ray diffraction analyses.It was found that the nanocomposite coatings are composed of different carbide nanocrystals (with sizes of a few nanometres) embedded in an amorphous carbon matrix. The results of qualitative and quantitative analyses of the nanocrystalline phase in the coatings with use of high-resolution transmission electron microscopy combined with image analysis are given in the paper.An effect of the nano/microstructure parameters of the coated alloy onto its micro-mechanical (nanohardness and Young's modulus) and tribological properties (wear resistance and friction coefficient) is discussed in the paper.  相似文献   

9.
《材料科学技术学报》2019,35(8):1555-1562
The effect of a gradient nanostructured (GNS) surface layer obtained by ultrasonic surface rolling process (USRP) on the fatigue behavior of Ti-6Al-4 V alloy has been studied in this paper. Microstructure, surface topography, surface roughness and residual stress measurements were performed to characterize the surface under different conditions. Rotating bending fatigue tests were carried out to evaluate the fatigue behavior of different treatments. The results present a remarkable fatigue performance enhancement for the Ti-6Al-4 V alloy with a GNS surface layer obtained by application of USRP with respect to the untreated condition, notwithstanding its considerable surface roughness due to severe ultrasonic impacts and extrusions. Mechanical surface polishing treatment further enhances the beneficial effects of USRP on the fatigue performance. The significantly improved fatigue performance can mainly be ascribed to the compressive residual stress. Simultaneously, the GNS surface layer and surface work hardening have a synergistic effect that accompanies the effect of compressive residual stress.  相似文献   

10.
Four kinds of surface hardened-specimens (ordinary structural steel with carbon content of 0.45% C) having hardened thicknesses of 0.7–1.8 mm were prepared using a ‘super-rapid induction heating (SRIH) system’. Rotation bending fatigue tests were performed with special focus on the effect of a hardened thickness on fatigue properties. Measurement of residual stress and observation of the fracture surface were also carried out to investigate the fracture mechanism of the specimen with a shallow hardened layer. It was found that there is not much improvement of fatigue strength at 107 cycles for specimens with shallow hardened layers in spite of having a high compressive residual stress of about 1000 MPa. This is because the fatigue crack originating from inside the hardened layer leads to the final fracture of the specimen (internal fracture mode). Improvement of fatigue strength has been achieved on the specimen with thick hardened layers, such as those about 1.8 mm thick. In this case, fatigue cracks originate from inclusions located in hardened layers, which leads to final fracture (hardened-layer fracture mode).  相似文献   

11.
Fatigue tests with and without fretting against unnitrided fretting pads were conducted on unnitrided and plasma nitrided Ti-6Al-4V samples. Plasma nitrided samples exhibited higher surface hardness, higher surface compressive residual stress, lower surface roughness and reduced friction force compared with the unnitrided specimens. Plasma nitriding enhanced the lives of Ti-6Al-4V specimens under both plain fatigue and fretting fatigue loadings. This was explained in terms of the differences in surface hardness, surface residual stress, surface roughness and friction force between the unnitrided and nitrided samples.  相似文献   

12.
TIMETAL 54M (in the following Ti-54M) is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. These attractive properties might be a driving force for replacing Ti-6Al-4V in many aircraft as well as biomedical applications. Since HCF performance is one of the most important requirements for these applications, it is essential to improve this property by microstructural optimization and by mechanical surface treatments such as shot peening or ball burnishing. The latter improvement is mainly the result of induced near-surface severe plastic deformation which results in work-hardening and the generation of compressive residual stresses that retard fatigue crack propagation. The main aim of the present study was to investigate the potential fatigue life improvements in Ti-54M due to shot peening and ball-burnishing. The process-induced residual stresses and stress-depth profiles were determined by energy-dispersive X-ray diffraction (ED) of synchrotron radiation with the beam energy of 10-80 keV. Results on Ti-54M and Ti-6Al-4V will be compared and correlated with the mean stress and environmental sensitivities of the fatigue strengths in the microstructures.  相似文献   

13.
Life prediction methods are essential in the selection of materials for high performance applications. These design criteria allow safe lives to be predicted for areas of geometrical discontinuity where localized increases in stress lead to the early initiation and propagation of fatigue cracks under cyclic loading. This paper explains two methods for predicting the initiation life of a double edged notch specimen (Kt = 1.9), and applies them to the α + β titanium alloy Ti6246 over a range of temperatures. The Coffin–Manson equation is effective for fully reversed cyclic behaviour. However a Walker strain-based parameter was found to be more appropriate when mean stresses are introduced. The analysis encompasses traditional analytical approaches which are limited in relation to the determination of the stresses and strains at the notch root and a finite element analysis based on ABAQUS®. The FEA is used to characterize loop generation at the notches and to optimize the stress and strain conditions in the critical root positions.The main focus of the paper, however, is high temperature behaviour where creep and environmental damage impact on fatigue crack development. The limitations of the modelling approach under these conditions are discussed.  相似文献   

14.
A method is presented for determining the rolling load that produced optimum fatigue strength improvement in deep-rolled specimens. Based on the surface stresses calculated using Hertzian theory and von Mises distortion energy failure criterion, the method yields an equivalent stress that is shown to be a suitable parameter for describing deep-rolling conditions. In addition, fatigue tests have been carried out on deep-rolled smooth and notched specimens of 37CrS4 steel. Specimens with optimized deep rolling are found to attain higher bending fatigue strengths than deep-rolled smooth samples, thus fully removing the notch effect. The greater fatigue strength improvement observed for notched samples is explained on the basis of fatigue behaviour. Adequate static strengths are demonstrated by fatigue-cracked specimens, particularly for ductile material conditions.  相似文献   

15.
Modification of spraying fused (MSF) of plasma arc as heat source was used to improve the fatigue performance of welded joint, which both fundamentally reduced stress concentration at weld toe and achieved metallurgical bond between spraying fused coating and welding. The low transformation temperature alloy powder was applied to the method of MSF. After spraying fusion, especially spraying fused joint by low transformation temperature alloy powder, the distribution of residual stress is more difficult to be obtained. Finite element (FE) simulation as an important tool was used to determine the stress field and temperature field of spraying fused joint. Simulated results show that as-welded joint and welded joint spraying fused by conventional nickel base alloy powder (Conventional-joint) present tensile stress. The stress of welded joint spraying fused by low transformation temperature alloy powder (LTT-joint) is compressive stress. Fatigue test results indicated that under the condition of 2 × 106 cycles, the fatigue strength of as-welded joint is 135 MPa, while that of Conventional-joint and LTT-joint is 218 MPa and 235 MPa, respectively. The fatigue strength of Conventional-joint increases by 61.48%, and fatigue strength of LTT-joint increases by 74.07%.  相似文献   

16.
The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of Cr–Mo–V low alloy steel which was used for forged railway brake discs was studied. Tensile strength and LCF properties were examined over a range from room temperature (RT) to 600 °C using specimens cut from circumferential direction of a forged disk. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior and behaves Masing type, especially at higher strain amplitudes. At higher than 600 °C, carbide particles aggregated and a decarburized layer developed near the specimen surface. Micro voids distribute within the depth of 50 μm from the specimen surface could coalesce with fatigue cracks. Multiple crack initiation sites were observed on the fracture surface. The oxide film that generated at 600 °C covered the fatigue striations and accelerated the crack propagation. Final fracture area with bigger and deeper dimples showed better ductility at higher temperature. The investigated LCF behavior can provide reference for brake disc life assessment and fracture mechanisms analysis.  相似文献   

17.
This study investigated the method of estimating the fatigue strength of small notched Ti-6Al-4V specimen using the theory of critical distance that employs the stress distribution in the vicinity of the notch root. Circumferential-notched round-bar fatigue tests were conducted to quantify the effects of notch radius and notch depth on fatigue strength. The fatigue tests show that the larger notch radius increases the fatigue strength and the greater notch depth decreases the fatigue strength. The theory of critical distance assumes that fatigue damage can be correctly estimated only if the entire stress field damaging the fatigue fracture process zone is taken into account. Critical distance stress is defined as the average stress within the critical distance from notch root. The region from the notch root to the critical distance corresponds to the fatigue fracture process zone for crack initiation. It has been found that a good correlation exists between the critical distance stress and crack initiation life of small notched specimens if the critical distance is calibrated by the two notched fatigue failure curves of different notch root radii. The calibrated critical distances did not vary clearly over a wide range of fatigue failure cycles from medium-cycle low-cycle fatigue regime to high-cycle fatigue regime and have an almost constant value. This critical distance corresponds to the size of crystallographic facet at the fatigue crack initiation site for the wide range of fatigue cycles.  相似文献   

18.
A boronized layer of Cr12MoV steel was processed with LQ (laser quenching), and the fatigue limits of original samples before and laser quenched samples were calculated with Locati tension–tension fatigue test, and the fracture morphologies were observed with a SEM (scanning electronic microscope). The results show that the compressive residual stress of −382 MPa is introduced by LQ, the fatigue strength improves from 368 MPa to 422 MPa, increasing by 14.7%, and the fatigue crack is initiated at the subsurface after LQ. The compressive residual stress of the Cr12MoV by LQ is of the main mechanism of the improving of fatigue property.  相似文献   

19.
The work deals with multiaxial fatigue strength of notched round bars made of 40CrMoV13.9 steel and tested under combined tension and torsion loading, both in-phase and out-of-phase. The axis-symmetric V-notches present a constant notch root radius, 1 mm, and a notch opening angle of 90°; the notch root radius is equal to 4 mm in the semi-circular notches where the strength in the high cycle fatigue regime is usually controlled by the theoretical stress concentration factor, being the notch root radius large enough to result in a notch sensitivity index equals to unity. In both geometries the diameter of the net transverse area is 12 mm.The results from multi-axial tests are discussed together with those obtained under pure tension and pure torsion loading from notched specimens with the same geometry. Altogether more than 120 new fatigue data are summarised in the present work, corresponding to a one-year of testing programme.All fatigue data are presented first in terms of nominal stress amplitudes referred to the net area and then re-analysed in terms of the mean value of the strain energy density evaluated over a given, crescent shape volume embracing the stress concentration region. For the specific steel, the radius of the control volume is found to be independent of the loading mode.  相似文献   

20.
Dissimilar welding of Ti–6Al–4V (Ti-6-4) to Ti–4.5A1–3V–2Fe–2Mo (SP-700) alloys was performed using a CO2 laser. The microstructure and notched tensile strength (NTS) of the dissimilar welds were investigated in the as-welded and post-weld heat treatment (PWHT) conditions. Moreover, the results were compared with homogeneous laser welds with the same PWHT. The dilution of SP-700 with the Ti-6-4 alloy caused the formation of fine needle-like α + β structures, resulting in the exhibition of a moderately high fusion zone (FZ) hardness of HV 398. The high FZ hardness (HV 438) for the weld with the PWHT at 482 °C was associated with low NTS or high notch brittleness. The fracture appearance of the notched tensile specimen was related to its inherent microstructure. With increasing the PWHT temperature, the thickness of grain boundary α increased, which promoted an intergranular dimple fracture. By contrast, fine shallow dimples were present in the peak-aged weld, which was induced by the refined α + β microstructures in the basket-weave form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号