首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Zhang Y  Ren L  Tu Q  Wang X  Liu R  Li L  Wang JC  Liu W  Xu J  Wang J 《Analytical chemistry》2011,83(24):9651-9659
On the basis of the host-guest interactions between azobenzenes and cyclodextrins, a new strategy for the preparation of a dually functionalized poly(dimethylsiloxane) (PDMS) surface was investigated using surface-initiated atom-transfer radical polymerization (SI-ATRP) and click chemistry. The PDMS substrates were first oxidized in a H(2)SO(4)/H(2)O(2) solution to transform the surface Si-CH(3) groups into Si-OH groups. Then, the SI-ATRP initiator 3-(2-bromoisobutyramido)propyl(trime-thoxy)silane was grafted onto the substrates through a silanization reaction. Sequentially, the poly(ethylene glycol) (PEG) units were introduced onto the PDMS-Br surfaces via SI-ATRP reaction using oligo(ethylene glycol) methacrylate. Afterward, the bromide groups on the surface were converted to azido groups via nucleophilic substitution reaction with NaN(3). Finally, the azido-grafted PDMS surfaces were subjected to a click reaction with alkynyl and PEG-modified β-cyclodextrins, resulting in the grafting of cyclodextrins onto the PDMS surfaces. The composition and chemical state of the modified surfaces were characterized via X-ray photoelectron spectroscopy, and the stability and dynamic characteristics of the cyclodextrin-modified PDMS substrates were investigated via attenuated total reflection-Fourier transform infrared spectroscopy and temporal contact angle experiments. The surface morphology of the modified PDMS surfaces was characterized through imaging using a multimode atomic force microscope. A protein adsorption assay using Alexa Fluor594-labeled bovine serum albumin, Alexa Fluor594-labeled chicken egg albumin, and FITC-labeled lysozyme shows that the prepared PDMS surfaces possess good protein-repelling properties. On-surface studies on the interactions between azobenzenes and the cyclodextrin-modified surfaces reveal that the reversible binding of azobenzene to the cyclodextrin-modified PDMS surfaces and its subsequent release can be reversibly controlled using UV irradiation. Sandwich fluoroimmunoassay of the cardiac markers myoglobin and fatty acid-binding protein demonstrates that the cyclodextrin-modified PDMS surfaces can be repeatedly utilized in disease biomarker analysis.  相似文献   

2.
Su CY  Fu D  Lu AY  Liu KK  Xu Y  Juang ZY  Li LJ 《Nanotechnology》2011,22(18):185309
A simple, cost-effective and lithography-free fabrication of graphene strips for device applications is demonstrated. The graphene thin layers were directly grown on Cu wires, followed by Cu etching and transfer printing to arbitrary substrates by a PDMS stamp. The Cu wires can be arranged on the PDMS stamp in a desired pattern; hence, the substrates can receive graphene strips with the same pattern. Moreover, the preparation of graphene strips does not involve conventional lithography; therefore, the surface of the graphene strip is free of residual photoresists, which may be useful for studies requiring clean graphene surfaces.  相似文献   

3.
等离子体基离子注入制备TiN膜的成分结构   总被引:1,自引:0,他引:1  
采用Ti、N等离子体基离子注入和先在基体表面沉积纯钛层然后离子注氮混合两种方法在铝合金基体上制备了TiN膜.利用XPS分析了两种方法制备TiN薄膜的成分深度分布和元素化学价态,并用力学性能显微探针测试对比了TiN膜的纳米硬度.研究表明:两种方法制备的薄膜均由TiN组成,Ti、N等离子体基离子注入薄膜中Ti/N≈1.1,而离子注入混合薄膜中Ti/N≈1.3,Ti、N等离子体基离子注入薄膜表面区域为TiN和TiO2的混合组织,TiN含量多于TiO2,离子注入混合薄膜表面主要是TiO2;Ti、N等离子体基离子注入所制备的薄膜的纳米硬度峰值为12.26 GPa,高于离子注入混合的7.98 GPa.  相似文献   

4.
In recent years, polymer surfaces have become increasingly popular for biomolecule attachment because of their relatively low cost and desirable bulk physicochemical characteristics. However, the chemical inertness of some polymer surfaces poses an obstacle to more expansive implementation of polymer materials in bioanalytical applications. We describe use of argon plasma to generate reactive hydroxyl moieties at the surface of polystyrene microtiter plates. The plates are then selectively functionalized with silanes and cross-linkers suitable for the covalent immobilization of biomolecules. This plasma-based method for microtiter plate functionalization was evaluated after each step by X-ray photoelectron spectroscopy, water contact angle analysis, atomic force microscopy, and bioimmobilization efficacy. We further demonstrate that the plasma treatment followed by silane derivatization supports direct, covalent immobilization of biomolecules on microtiter plates and thus overcomes challenging issues typically associated with simple physisorption. Importantly, biomolecules covalently immobilized onto microtiter plates using this plasma-based method retained functionality and demonstrated attachment efficiency comparable to commercial preactivated microtiter plates.  相似文献   

5.
Poly(dimethylsiloxane) (PDMS)-based microfluidic devices are increasing in popularity due to their ease of fabrication and low costs. Despite this, there is a tremendous need for strategies to rapidly and easily tailor the surface properties of these devices. We demonstrate a one-step procedure to covalently link polymers to the surface of PDMS microchannels by ultraviolet graft polymerization. Acrylic acid, acrylamide, dimethylacrylamide, 2-hydroxylethyl acrylate, and poly(ethylene glycol)monomethoxyl acrylate were grafted onto PDMS to yield hydrophilic surfaces. Water droplets possessed contact angles as low as 45 degrees on the grafted surfaces. Microchannels constructed from the grafted PDMS were readily filled with aqueous solutions in contrast to devices composed of native PDMS. The grafted surfaces also displayed a substantially reduced adsorption of two test peptides compared to that of oxidized PDMS. Microchannels with grafted surfaces exhibited electroosmotic mobilities intermediate to those displayed by native and oxidized PDMS. Unlike the electroosmotic mobility of oxidized PDMS, the electroosmotic mobility of the grafted surfaces remained stable upon exposure to air. The electrophoretic resolution of two test peptides in the grafted microchannels was considerably improved compared to that in microchannels composed of oxidized PDMS. By using the appropriate monomer, it should be possible to use UV grafting to impart a variety of surface properties to PDMS microfluidics devices.  相似文献   

6.
Thick polyimide layers can be formed by using some unique properties of poly(dimethylsiloxane)-polyimide (PDMS/PMDA–ODA) blends followed by surface modification and deposition of a second layer of polyimide precursor chemicals. The method is based on the micro-phase separation characteristics of these blends to yield surfaces that have PDMS-like character. Upon modification with UV/ozone treatment, a surface that is essentially SiO x and hydrophilic in nature is produced. This surface is amenable to reaction and deposition of a second polyimide layer from polyimide precursors. The thicker polyimide layer has enhanced adhesion between the original layer of the blend and the new polyimide layer and this approach finds extensive applications for products that require thick polymer layers. Changes in surface energy for various blend compositions were monitored by measurement of advancing contact angle with de-ionized water. Contact angle for unmodified polyimide films was on the order of 70° and it increased to about 104° after blending with PDMS and curing. UV/ozone treatment reduced the contact angle of the doped polyimide to less than 5°. X-ray photoelectron spectroscopy (XPS) and angle resolved XPS (ARXPS) measurements were used to monitor the chemical compositions of the various surfaces. High-resolution XPS spectra in the Si2p region confirm the transformation of O–Si–C bonds in PDMS to SiO x , where x is about 2. Scanning electron microscopy (SEM) of some selected samples shows that the blends contain phase separation of the polymers at the surfaces of the samples. Atomic force microscopy (AFM) of siloxane-free polyimide, and PDMS/PMDA–ODA blends both prior to and after UV/ozone exposure, show that the films are essentially flat at short treatment times (less than 60 min). AFM also reveals the separation of PDMS into micro-domains at the cured film surface and throughout the layer below the surface of the blended films. Adhesion of a subsequently deposited polyimide layer to the modified polyimide surface was found to be greatly improved when compared to the adhesion obtained for deposition onto a pristine polyimide surface.  相似文献   

7.
This paper demonstrates replication of ultrafast laser-induced micro/nano surface textures on poly(dimethylsiloxane) (PDMS). The surface texture replication process reduces the processing steps for microtexturing while improving light trapping. Two methods are demonstrated to replicate surface microtexture, a simple mold method and an embossing method. The laser microtextured silicon and titanium surfaces with micro to nanoscale features have been successfully replicated. Optical characterization of the replicated microtextured PDMS surfaces is performed and the results agree with model predictions. The replicated microtextured PDMS film is applied on a silicon surface and optical characterization shows that surface reflectance can be suppressed over 55% compared to the control value.  相似文献   

8.
Sui G  Wang J  Lee CC  Lu W  Lee SP  Leyton JV  Wu AM  Tseng HR 《Analytical chemistry》2006,78(15):5543-5551
An improved approach composed of an oxidation reaction in acidic H2O2 solution and a sequential silanization reaction using neat silane reagents for surface modification of poly(dimethylsiloxane) (PDMS) substrates was developed. This solution-phase approach is simple and convenient for some routine analytical applications in chemistry and biology laboratories and is designed for intact PDMS-based microfluidic devices, with no device postassembly required. Using this improved approach, two different functional groups, poly(ethylene glycol) (PEG) and amine (NH2), were introduced onto PDMS surfaces for passivation of nonspecific protein absorption and attachment of biomolecules, respectively. X-ray electron spectroscopy and temporal contact angle experiments were employed to monitor functional group transformation and dynamic characteristics of the PEG-grafted PDMS substrates; fluorescent protein solutions were introduced into the PEG-grafted PDMS microchannels to test their protein repelling characteristics. These analytical data indicate that the PEG-grafted PDMS surfaces exhibit improved short-term surface dynamics and robust long-term stability. The amino-grafted PDMS microchannels are also relatively stable and can be further activated for modifications with peptide, DNA, and protein on the surfaces of microfluidic channels. The resulting biomolecule-grafted PDMS microchannels can be utilized for cell immobilization and incubation, semiquantitative DNA hybridization, and immunoassay.  相似文献   

9.
Micropatterning of titanium dioxide (TiO2) on the surface of thin poly(dimethyl siloxane) (PDMS) films was described by means of proton irradiation and liquid-phase deposition (LPD) techniques. The surface of thin PDMS films was irradiated with accelerated proton ions through a pattern mask in the absence or presence of oxygen in order to create hydrophilically/hydrophobically patterned surfaces. The results of the surface analysis revealed that the PDMS films irradiated at the fluence of 1 x 10(15) ions cm-2 in the presence of oxygen showed the highest hydrophilicity. The LPD of TiO2 particles on the patterned PDMS film surface showed a selective deposition of TiO2 on the irradiated regions, leading to well defined TiO2 micropatterns. The crystal structure of the formed TiO2 films was found to be in an anatase phase by X-ray diffraction analysis. This process can be applied for patterning various metal and metal oxide particles on a polymer substrate.  相似文献   

10.
The poly(dimethylsiloxane) (PDMS) material provides a number of advantageous features, such as flexibility, elasticity, and transparency, making it useful in integrated analytical systems. Hard fused-silica capillary structures and soft PDMS channels can easily be combined by a tight fit, which offers many alternatives for structure combinations. PDMS and fused silica are in different ways prone to adsorption of low levels of organic compounds. The need for modification of the inner wall surface of PDMS channels may often be necessary, and in this paper, we describe an easy and effective method using the amine-containing polymer PolyE-323 to deactivate both fused-silica and PDMS surfaces. The adsorption of selected peptides to untreated surfaces was compared to PolyE-323-modified surfaces, using both radionuclide imaging and capillary electrophoresis experiments. The polyamine modification displayed a substantially reduced adsorption of three hydrophobic test peptides compared to the native PDMS surface. Filling and storage of aqueous solution were also possible in PolyE-323-modified PDMS channels. In addition, hybrid microstructures of fused silica and PDMS could simultaneously be deactivated in one simple coating procedure.  相似文献   

11.
This work presents a method for the fabrication of well defined chemically active nano-patterned surfaces. Electron-beam lithography has been combined with plasma-based processes in order to create sub-micron carboxylic functional areas over a non-bio-adhesive matrix. Characterization of the patterned surface by several surface analysis techniques reveals that this patterning technique is compatible with the plasma polymerization process in order to fabricate chemically active features with lateral size down to 300?nm. Moreover, experiments with a model protein (bovine serum albumin) on the patterned surfaces show preferential adhesion on the active region indicating the ability of this method for the design of biosensing platforms.  相似文献   

12.
We report a heterogeneous immunoassay for cholera toxin (CT) using supported bilayer membranes (SBMs) in a poly(dimethylsiloxane) (PDMS) microfluidic device. Phosphatidylcholine membranes assembled on plasma-oxidized PDMS by vesicle fusion bring about favorable surface properties, such as improved wettability and protein resistance. Contact angle measurements show that the lipid membranes can preserve hydrophilic surfaces for hours, whereas untreated substrates rapidly undergo hydrophobic recovery. Fluorescence recovery after photobleaching performed in situ reveals that the membranes have relatively high lateral mobility. Experimental data-fitting to theoretical models yields diffusion coefficients of 1.8 +/- 0.7 microm(2)/s on PDMS and 3.4 +/- 0.8 microm(2)/s on glass. Fluorescence studies utilizing tagged proteins show that SBMs reduce nonspecific adsorption of avidin and BSA on PDMS by 2-3 orders of magnitude, as compared to that on plasma oxidized surfaces. SBMs and their protein-resistant properties are not significantly affected by long flow times, indicating good membrane stability. These studies increase our understanding of the relationship between molecular level interactions and membrane properties, allowing for development of a rapid heterogeneous immunoassay for CT in PDMS microchips with cell surface receptor molecules. Using optimized sample injection and buffer washing conditions, microfluidic immunoassay of CT is complete within 25 min, and a dynamic range over 3 orders of magnitude with a detection limit of 8 fmol of toxin is achieved.  相似文献   

13.
While recent experiments have found that at optimum doping for the highest critical temperature in HgBa2CuO4 + y (Hg1201) the oxygen interstitials (O-i) are not homogeneously distributed but form one-dimensional atomic wires, there are no available information of its electronic structure considering self-organized O-i atomic wires. Here we report the calculated electronic structure of HgBa2CuO4 + y where oxygen interstitials form atomic wires along (1,0,0) crystal direction in the Hg layer. We find that at optimum doping for superconductivity the chemical potential is tuned near an electronic topological Lifshitz transition for the appearing of a second quasi 1D Fermi surface. A first large Fermi surface coexists with a second incipient quasi one-dimensional (1D) Fermi surface related with atomic wires of oxygen interstitials. Increasing oxygen doping the chemical potential is driven to the band edge of the second 1D-band giving a peak in the density-of-states. The new 1D electronic states are confined near the oxygen interstitial wires with a small spread only on nearby sites. Spin-polarized calculations show that the magnetic response is confined in the oxygen-poor domains free of oxygen interstitials wires and it is quite insensitive to the density of O-i wires.  相似文献   

14.
在硅溶胶中加入八甲基环四硅氧烷(D4)和偶联剂γ-(2,3-环氧丙氧) 丙基三甲氧基硅烷(KH560),以十二烷基苯磺酸(DBSA)催化D4的开环聚合,借助超声强化聚二甲基硅氧烷(PDMS)和偶联剂对硅溶胶的表面改性。将改性硅溶胶及其混合物分散在甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)的混合单体中,实施微滴乳液聚合,制备SiO2/聚丙烯酸酯纳米复合材料。硅溶胶改性阶段的催化剂中和后成为后续微滴乳液聚合的乳化剂,而伴生的PDMS成为有效抑制单体珠滴Ostwald 熟化的超疏水剂。采用FTIR、TGA、TEM、马尔文纳米粒度仪、水接触角等测试方法对改性纳米粒、复合胶乳和胶乳薄膜进行表征。结果表明,PDMS和偶联剂在SiO2表面形成了共价键合和包覆,且伴生的PDMS改善了复合胶乳薄膜的表面疏水性,复合粒子是聚合物基体为壳、SiO2纳米颗粒呈海岛分散的 (多)核-壳结构形态,SiO2占单体质量分数为3%时,平均粒径约98 nm。  相似文献   

15.
A new photografting method to micropattern a covalent surface modification on poly(dimethylsiloxane) (PDMS) provides advantages in simplicity and efficiency. To accomplish the entire process on the benchtop, the PDMS was initially treated with benzophenone dissolved in a water/acetone mixture. This process permitted limited diffusion of the photoinitiator into the PDMS surface. Polymerization of acrylic acid was initiated by exposure of the benzophenone-implanted PDMS to UV radiation through a photomask with a thin aqueous layer of acrylic acid sandwiched between the PDMS and photomask. This procedure resulted in patterned poly(acrylic acid) (PAA) on the PDMS surface. In the modified regions, PAA and PDMS formed an interpenetrating polymer network extending 50 microm into the PDMS with an X-Y spatial resolution of 5 microm. The carboxyl groups of the PAA graft could be derivatized to covalently bond other molecules to the patterned PAA. Two bioanalytical applications of this micropatterned surface were demonstrated: (1) a guide for cell attachment and growth and (2) a substrate for immunoassays. 3T3 cells were shown to selectively localize to modified surface regions where they could be cultured for up to 7 days. Additionally, the micropatterned surface was used to immobilize either protein A or antibody for heterogeneous immunoassays.  相似文献   

16.
We demonstrate a simple procedure to coat the surfaces of enclosed PDMS microchannels by UV-mediated graft polymerization. In prior applications, only disassembled channels could be coated by this method. This limited the utility of the method to coatings that could easily and tightly seal with themselves. By preadsorbing a photoinitiator onto the surface of PDMS microchannels, the rate of polymer formation at the surface was greatly accelerated compared to that in solution. Thus, a gel did not form in the lumen of enclosed microchannels. We demonstrate that the photoinitiator benzophenone remained on the surface of PDMS even after extensive washing. After addition of a variety of monomer solutions (acrylic acid, poly(ethylene glycol) monomethoxyl acrylate, or poly(ethylene glycol) diacrylate) and illumination with UV light, a stable, covalently attached surface coating formed in the microchannels. The electroosmotic mobility was stable in response to air exposure and to repeated cycles of hydration-dehydration of the coating. These surfaces also supported the electrophoretic separation of two model analytes. Placement of an opaque mask over a portion of the channel permitted photopatterning of the microchannels with a resolution of approximately 100 microm. By using an appropriate mixture of monomers combined with masks, it should be possible to fabricate PDMS microfluidic devices with distinct surface properties in different regions or channels.  相似文献   

17.
Tricia Carmichael and co‐workers employ a simple, low‐cost method for the fabrication of patterned metal films on elastomeric poly(dimethylsiloxane) (PDMS) substrates, as described on p. 59. The metal/PDMS composites are electrically conductive and mechanically flexible, making them suitable for use in the fabrication of lightweight, flexible devices such as wearable electronics, biocompatible sensors, and artificial nerves, skins, and muscles. Copper wires on PDMS remain conductive when subjected to linear strains of up to 52 %. The utility of these wires is demonstrated by using them as laminated top contacts in an organic light‐emitting device.  相似文献   

18.
Microfluidic channels fabricated from poly(dimethylsiloxane) (PDMS) are employed in surface plasmon resonance imaging experiments for the detection of DNA and RNA adsorption onto chemically modified gold surfaces. The PDMS microchannels are used to (i) fabricate "1-D" single-stranded DNA (ssDNA) line arrays that are used in SPR imaging experiments of oligonucleotide hybridization adsorption and (ii) create "2-D" DNA hybridization arrays in which a second set of PDMS microchannels are placed perpendicular to a 1-D line array in order to deliver target oligonucleotide solutions. In the 1-D line array experiments, the total sample volume is 500 microL; in the 2-D DNA array experiments, this volume is reduced to 1 microL. As a demonstration of the utility of these microfluidic arrays, a 2-D DNA array is used to detect a 20-fmol sample of in vitro transcribed RNA from the uidA gene of a transgenic Arabidopsis thaliana plant. It is also shown that this array fabrication method can be used for fluorescence measurements on chemically modified gold surfaces.  相似文献   

19.
In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O2 plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O2 plasma PCL scaffolds when OM was used.  相似文献   

20.
PDMS is widely used for prosthetic device manufacture. Conventional ion implantation is not a suitable treatment to enhance the biocompatibility of poly dimethyl siloxane (PDMS) due to its propensity to generate a brittle silicon oxide surface layer which cracks and delaminates. To overcome this limitation, we have developed new plasma based processes to balance the etching of carbon with implantation of carbon from the plasma source. When this carbon was implanted from the plasma phase it resulted in a surface that was structurally similar and intermixed with the underlying PDMS material and not susceptible to delamination. The enrichment in surface carbon allowed the formation of carbon based radicals that are not present in conventional plasma ion immersion implantation (PIII) treated PDMS. This imparts the PDMS surfaces with covalent protein binding capacity that is not observed on PIII treated PDMS. The change in surface energy preserved the function of bound biomolecules and enhanced the attachment of MG63 osteosarcoma cells compared to the native surface. The attached cells, an osteoblast interaction model, showed increased spreading on the treated over untreated surfaces. The carbon-dependency for these beneficial covalent protein and cell linkage properties was tested by incorporating carbon from a different source. To this end, a second surface was produced where carbon etching was balanced against implantation from a thin carbon-based polymer coating. This had similar protein and cell-binding properties to the surfaces generated with carbon inclusion in the plasma phase, thus highlighting the importance of balancing carbon etching and deposition. Additionally, the two effects of protein linkage and bioactivity could be combined where the cell response was further enhanced by covalently tethering a biomolecule coating, as exemplified here with the cell adhesive protein tropoelastin. Providing a balanced carbon source in the plasma phase is applicable to prosthetic device fabrication as illustrated using a 3-dimensional PDMS balloon prosthesis for spinal implant applications. Consequently, this study lays the groundwork for effective treatments of PDMS to selectively recruit cells to implantable PDMS fabricated biodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号