首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
不同填料氟橡胶复合材料高温性能研究   总被引:2,自引:0,他引:2  
为提高氟橡胶(FKM)高温性能,在FKM中分别加入相同质量分数的聚四氟乙烯(PTFE)、气相二氧化硅(SiO2)、纳米氧化锌(Nano-ZnO),采用机械共混法制备3种FKM复合材料;研究常温和160℃高温下3种填料对FKM复合材料力学性能的影响,结合三维形貌和扫描电镜微观形貌,分析FKM复合材料的摩擦磨损机制。结果表明:PTFE填料降低了FKM材料的力学性能,但可提高其高温摩擦性能;Nano-ZnO填料可提高FKM材料常温力学性能,但对高温力学及摩擦性能没有明显改善;Silica填料可显著改善FKM材料常温与高温条件下的抗磨减摩、抗拉伸撕裂等特性;160℃试验条件下,Silica填料可使FKM材料的拉伸强度提高31%,撕裂强度提高142%,摩擦因数降低52%,磨损量减少36.4%;在FKM中添加Silica可提高基体强度,高温摩擦时形成熔融层,使复合材料具有优异的耐磨性能。  相似文献   

2.
利用机械共混和热模压工艺制备凹凸棒(ATP)/石墨(GP)/氟橡胶(FKM)纳米复合材料,分析其硫化历程、拉伸强度和扯断伸长率,通过摩擦性能试验和摩擦面形貌观察,研究其摩擦特性。结果表明:随着纤维状ATP的添加,复合材料的表观交联密度和拉伸强度提高;当FKM复合材料中GP和ATP的添加比例为3∶1时,FKM复合材料具有较低摩擦因数和磨损率。在滑动摩擦过程中,氟橡胶摩擦面剥离的ATP和GP与FKM形成转移膜,而ATP的嵌入使得转移膜强度增加,因此合适的2种填料比率能够增强FKM复合材料的摩擦特性。  相似文献   

3.
石墨和二硫化钼填充氟橡胶的摩擦磨损特性研究   总被引:2,自引:0,他引:2  
研究了石墨和二硫化钼填充量对氟橡胶(FKM)的摩擦磨损性能的影响, 并用扫描电子显微镜和热重分析仪分析了石墨和二硫化钼填充氟橡胶(FKM)的磨损表面和热稳定性.结果表明,石墨和二硫化钼的加入提高了FKM的摩擦磨损性能与热稳定性;随着石墨和二硫化钼用量的增大,复合材料的摩擦因数和磨损量先降后升;当石墨和二硫化钼质量分数分别为3%和5%时,复合材料的摩擦磨损性能最佳;当二硫化钼填充量为10%时,氟橡胶的热分解温度比未添加润滑剂的氟橡胶提高了7 ℃左右.  相似文献   

4.
采用共混-冷压-烧结-整形的工艺制备有机物填充聚四氟乙烯(PTFE)复合材料,考察相同含量的不同有机填料对PTFE复合材料力学性能和摩擦学性能的影响。结果发现,加入有机填料后,复合材料的拉伸强度降低,但硬度和压缩强度均提高;有机填料有效地改善了PTFE复合材料的摩擦学性能,其中,质量分数15%聚苯酯填充的PTFE复合材料减摩效果最好,质量分数15%聚酰亚胺填充的PTFE复合材料的耐磨损性能最优。相比之下,质量分数15%芳纶填充的PTFE复合材料摩擦磨损性能及力学性能最好,其耐磨损性能较纯PTFE提高了近400倍,而摩擦因数仅为纯PTFE的84%。其原因在于芳纶的加入有效地改变了摩擦机制,能形成均匀连续的转移膜,进而降低了磨损。  相似文献   

5.
分别以苎麻原麻和碱麻为增强体,KH550为偶联剂,制备了苎麻增强环氧树脂复合材料,研究了偶联剂用量和纤维含量对复合材料力学性能的影响,并对拉伸断口进行了观察。结果表明:当纤维的质量分数为50%,偶联剂用量为2%时,原麻/环氧树脂复合材料的力学性能最好,拉伸强度为172.9MPa,弯曲强度达365.4MPa;当纤维的质量分数为50%,偶联剂用量为3%时,碱麻/环氧树脂复合材料具有最好的拉伸性能,拉伸强度为117.3MPa;当纤维的质量分数为40%,偶联剂用量为3%时,碱麻/环氧树脂复合材料具有最好的弯曲性能,弯曲强度达293.2MPa。  相似文献   

6.
以超高分子量聚乙烯为基体,用纳米二硫化钼和氟橡胶对其进行改性,制备一种新型复合UHMWPE水润滑轴承材料。在轴系试验台SSB-100上,研究复合UHMWPE材料在不同转速下的摩擦磨损性能,并分析其磨损形貌。结果表明,采用纳米二硫化钼改性UHMWPE时并不能有效改善其摩擦性能;采用氟橡胶改性时UHMWPE复合材料的摩擦因数呈现整体下降、局部波动的趋势,并在氟橡胶质量分数为20%时摩擦因数最低;二硫化钼和氟橡胶协同改性UHMWPE材料的摩擦因数随着二硫化钼和氟橡胶含量的升高而逐渐下降,其中纳米二硫化钼质量分数为8%、氟橡胶质量分数为16%的材料摩擦性能和磨损性能都达到最优。  相似文献   

7.
通过机械搅拌和超声分散制备纳米ZnO填充PTFE复合材料,研究纳米ZnO填充量对复合材料力学及摩擦磨损性能的影响。结果表明:当ZnO质量分数小于3%时,复合材料的拉伸强度与纯PTFE相比略有增高;复合材料的密度、硬度、摩擦因数随ZnO填充量的增加而逐渐增大;当ZnO填充质量分数为1%~3%时,复合材料的磨耗量大幅下降,但若继续增加ZnO填充量,复合材料的磨耗量却变化不大。  相似文献   

8.
用热压成型法分别制备了纳米、微米石墨填充聚四氟乙烯(PTFE)的复合材料,对纯PTFE和复合材料进行了硬度、耐磨性和拉伸试验,用SEM观察了拉伸断口形貌.结果表明:纳米和微米石墨均能提高复合材料的硬度和耐磨性,而复合材料的抗拉强度和断后伸长率均有所下降;纳米石墨/PTFE复合材科的硬度、耐磨性、抗拉强度和断后伸长率均比微米石墨/PTFE复合材料的高;当纳米石墨质量分数为7%时,复合材料的综合性能较好,当质量分数大于7%后,复合材料的断后伸长率迅速下降;纳米石墨与PTFE相容性较好,在PTFE中的分布均匀.  相似文献   

9.
采用注塑成型法制备纳米Si3N4和玻璃纤维混杂填充PA6尼龙复合材料,对PA6复合材料的力学性能和摩擦学性能进行了实验研究.采用扫描电子显微镜观察分析磨损表面形貌及磨损机制.结果表明:纳米Si3N4和玻璃纤维混杂填料能使PA6复合材料的拉伸强度和表面硬度增大.纳米Si3N4和玻璃纤维混杂可以显著改善尼龙复合材料的摩擦学性能,以3% Si3N4的耐磨减摩性最好.  相似文献   

10.
研究了不同的无机填料对Ekonol/PrFE复合材料的力学性能和摩擦学性能的影响,用扫描电子显微镜观察了复合材料磨损后的表面形貌,并探讨了其磨损机制.结果表明:无机填料的加入改善了Ekonol/PTFE复合材料的力学性能和抗磨损性能.添加石墨与MoS2的Ekonol/PrFE复合材料的力学性能最好,当石墨与MoS2的质量分数为5%和3%时.复合材料的力学性能达到最佳值,拉伸强度提高了34%,弯曲强度提高了62%,弯曲模量提高了75%;添加石墨的Ekonol/PTFE复合材料的抗磨损性能最好,磨损体积最大减少了42%,且受外界条件变化的影响较小.SEM分析表明:在低速低载荷下,复合材料主要以粘着磨损为主;在高速高载荷下,主要以磨粒磨损为主.  相似文献   

11.
用纳米SiO2机械包覆硅灰石填充尼龙1010制备复合材料,对复合材料进行拉伸、硬度和摩擦磨损实验,并与纯硅灰石填充尼龙1010的复合材料进行对比。结果表明:纳米SiO2机械包覆硅灰石填充尼龙1010大幅度提高了尼龙复合材料的耐磨性,降低了摩擦因数;当纳米SiO2/硅灰石复合颗粒填充质量分数为20%时,复合材料达到最低摩擦因数0.307和最低磨损量1.27 mg,分别比纯尼龙降低了51.35%和55.86%。  相似文献   

12.
采用原位聚合法制备凹凸棒土/聚酰亚胺纳米复合材料,考察纳米复合材料的力学性能及在干摩擦、水润滑和油润滑3种情况下的摩擦磨损性能,并利用扫描电子显微镜观察磨损表面形貌。结果表明:凹凸棒土质量分数为3%时,复合材料的拉伸强度最好,随着纳米颗粒含量的增加,复合材料的拉伸强度、断裂伸长率明显下降,而弹性模量一直呈现上升趋势;在干摩擦条件下,低含量的纳米颗粒有助于转移膜的形成,可以有效改善材料的摩擦性能;在水润滑下,由于水的溶胀和冷却作用,摩擦因数较干摩擦降低了一个数量级;在油润滑下,润滑油的流动性有助于纳米颗粒分布到整个摩擦表面,材料的摩擦因数及磨损率有明显降低,相比于干摩擦和水润滑的磨粒磨损,此时磨损机制以疲劳磨损为主。  相似文献   

13.
纳米材料填充改性PTFE力学性能的研究   总被引:4,自引:0,他引:4  
利用四种纳米粒子填充改性聚四氟乙烯(PTFE),并研究了改性PTFE复合材料的物理机械性能。结果表明:纳米粒子会使PTFE的力学性能发生变化,提高了复合材料的硬度;但会使复合材料的拉伸强度和断裂伸长率降低。  相似文献   

14.
用热压成型法制备了纳米Si3N4填充的聚四氟乙烯(PTFE)复合材料,研究了纳米Si3N4质量分数、表面处理对PTFE复合材料力学和摩擦磨损性能的影响,用扫描电子显微镜(SEM)对拉伸断口形貌进行观察,分析了复合材料增强机制.结果表明:未处理纳米Si3N4能提高复合材料的硬度和耐磨性,但拉伸强度和冲击强度有所降低;表面处理纳米Si3N4后,PTFE复合材料的拉伸强度、冲击强度、减摩性能有所提高.拉伸断口的微观分析表明,表面处理Si3N4在PTFE基体中有较好的分散性,与PTFE基体界面结合较好.  相似文献   

15.
用热压成型法制备了纳米SiO2填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响,采用扫描电子显微镜观察了复合材料磨损表面形貌,并借助X射线能谱仪对试样磨损表面进行了微区分析。结果表明:纯UHMWPE磨损表面局部存在着大量的粘着变形和疲劳裂纹的特征,填充15%(质量分数)的纳米SiO2能较好地改善UHMWPE/nano-SiO2复合材料的摩擦磨损性能,其磨损表面只存在粘着撕裂现象,看不到疲劳裂纹特征。当填充纳米SiO2质量分数达到20%时,其磨损表面存在贫Si区和富Si区,同时磨损表面呈现出热裂纹迹象,复合材料的耐磨性能改善程度明显下降,并且摩擦因数出现了增大趋势。  相似文献   

16.
采用超临界流体技术制备出纳米CaCO3改性聚丙烯复合材料,研究了纳米CaCO3添加量对复合材料发泡效果、力学性能以及CaCO3和聚丙烯共混物流变性能的影响。结果表明:随纳米CaCO3添加量的增多,复合材料的发泡效果先变好再变差,而拉伸强度和冲击韧度均先升后降,当纳米CaCO3质量分数为5%时,复合材料的发泡效果最佳,拉伸强度和冲击韧度最大,分别为16MPa和37kJ·m-2;在250℃时,随着纳米CaCO3添加量的增大,共混物的表观黏度逐渐减小。  相似文献   

17.
李科  向定汉  朱晓林  王美龙 《润滑与密封》2007,32(1):159-161,192
通过模压的方法制备了聚四氟乙烯(PTFE)和纳米高岭土填充的聚苯硫醚(PPS)复合材料。摩擦磨损实验在往复式滑动摩擦试验机上完成进行,对摩面为硬度值HRC 38、表面粗糙度Ra0.8μm的45#钢。用扫描电镜观察了试样磨损表面形貌。实验结果表明:填料的加入降低了PPS的摩擦因数和磨损率,且PTFE和纳米高岭土共同填充的PPS复合材料比单一PTFE填充的PPS复合材料具有更好的摩擦磨损性能;其中试样PPS 15%PTFE 15%(质量分数)纳米高岭土具有最低的稳定摩擦因数0.20~0.23和最小的磨损率1.9×10-6mm3/(N.m)。PTFE和纳米高岭土的加入使PPS的主要磨损方式由粘着磨损转变为磨粒磨损。  相似文献   

18.
以添加表面活性剂的水为溶剂,采用溶剂混合法制备纳米 Al2 O3填充聚四氟乙烯(PTFE)复合材料,研究其力学性能和摩擦学性能,并与乙醇中分别制备纳米 Al2 O3填充 PTFE 复合材料进行比较。结果表明:在相同 Al2 O3填充比例下,水中制备的复合材料的拉伸强度和硬度要低于乙醇中制备的复合材料,而断裂伸长率却要高于乙醇中制备的复合材料。在200 N 和干摩擦条件下,当纳米 Al2 O3质量分数为1%~5%时,水中制备的复合材料的磨耗量要低于乙醇中制备的复合材料,并较纯 PTFE 磨耗量下降了1~2个数量级;且水中制备的复合材料的摩擦因数也要低于乙醇中制备的复合材料。复合材料磨痕处 SEM显示复合材料的磨损机制为黏着磨损和磨粒磨损。  相似文献   

19.
采用热压成型法制备了废纸纤维/聚乳酸复合材料,研究了加入KH550前后复合材料的微观形貌、力学性能、热稳定性能和吸水性能。结果表明:加入KH550后废纸纤维/聚乳酸复合材料拉伸断口更平滑,废纸纤维和聚乳酸界面相容性大幅提升;当加入质量分数为5%的KH550溶液时,加入KH550后的废纸纤维/聚乳酸复合材料的拉伸强度和弯曲强度比未加入KH550的分别最大提高11.2%和8.4%;加入质量分数为5%的KH550溶液后,废纸纤维/聚乳酸复合材料的吸水率降低;KH550的添加对复合材料的热稳定性影响较小。  相似文献   

20.
为了改善3D打印技术制备的连续碳纤维增强复合材料样件的拉伸力学性能,研究了不同填充路径对复合材料开孔板拉伸性能的影响。采用主应力轨迹路径的规划方法制备了主应力轨迹路径填充开孔板测试样件,并将其与栅格路径填充开孔板和机械加工开孔板进行了拉伸性能对比。结果表明:主应力轨迹路径填充开孔板与机械加工开孔板相比,拉伸强度高9.73%,弹性模量高25.58%;主应力轨迹路径填充开孔板在断裂前圆孔周围的应变分布更均匀,应变更小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号