首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对激光熔覆过程中剧烈的温度场变化伴随着应力、应变演化,进而导致零件具有高裂纹敏感性的问题,对不同激光扫描路径及工艺参数下残余应力演变规律进行研究。采用激光熔覆在Q345钢上制备了Fe基双层多道涂层,并以X射线衍射法结合电化学腐蚀剥层法测量沿涂层深度方向的残余应力分布,探究激光扫描路径、功率以及扫描速度对涂层显微组织和应力分布的影响。结果表明:涂层表面和内部为残余压应力,在涂层基体熔合线处残余应力发生突变,热影响区表现为残余拉应力;激光熔覆工艺对涂层残余应力的大小和分布规律有显著影响,当激光扫描路径为轮廓偏置式、激光功率为1.8 kW、扫描速度为0.02 m/s时,涂层具有最优的残余应力分布和成形质量;残余应力的产生主要与激光束对熔池的冲击作用以及熔覆层的非平衡凝固特性有关。  相似文献   

2.
基于有限元法对单道单层激光熔池的凝固过程进行数值模拟,得到熔覆过程中激光熔池的温度场分布及温度梯度分布等数据信息,结合测温实验,分析了激光熔池在凝固过程中的热行为,阐述了激光工艺参数对熔池凝固传热过程的影响。结果表明:在激光单道熔覆过程中,熔池前端热量集中、熔深较大,尾部热量传递迅速、熔深较小。温度梯度在熔池前端最大值变化范围是3.04~3.89×10~6℃/m~(-1)。激光功率对熔池热传递的影响效应大于扫描速度影响效应的规律。模拟和实验结果吻合。  相似文献   

3.
残余应力直接影响激光熔覆修复机械零件的结构强度和安全性能,为了掌握损伤轴面激光熔覆修复后的残余应力分布情况,以40Cr钢零件轴为基材,Ni60自熔合金粉末为熔覆材料,采用脉冲激光熔覆工艺制备零件轴表面修复试件,利用盲孔法对零件轴修复试件进行残余应力分布特性分析。结果表明,在轴面激光熔覆的镍基合金修复层中产生了不可忽略的残余拉应力,高应力区位于熔覆层始末两道上;轴线方向检测点上X方向残余应力呈"M"形分布,Y方向残余应力呈"Λ"形分布,σx值较高,接近基材屈服强度的45. 9%,而圆周方向检测点的X方向和Y方向残余应力相对稳定,最大拉应力约为200 MPa;激光扫描路径对轴面熔覆层的残余应力值的影响大、分布形状的影响小,螺旋路径熔覆产生的残余应力值较低,更适合圆周面修复,但熔覆层始末两道边沿处的残余应力比中间部位高,有必要采取适当措施进行消应力处理,以获得优良的修复效果。  相似文献   

4.
为了避免激光熔覆过程产生微裂纹缺陷,对磨损轴面激光熔覆过程的热力耦合问题进行研究。根据磨损轴面激光熔覆试验建立其非线性瞬态分析数学模型,并引入有序网格离散算法进行轴面激光熔覆有限元建模,通过ANSYS参数化设计语言(APDL)和单元生死法编程实现金属粉末圆周堆积的瞬态热-力循环及其耦合问题求解,获得了熔覆过程的三维温度和热应力分布规律。结果表明,熔池的温度梯度较大且光斑中心靠后位置的温度最高(2035.99℃),各节点瞬时温度衰变规律具有相似性和时间滞后性;热应力与温度梯度对应,冷却后的应力(约279 MPa)集中于热影响区(HAZ)且靠近覆层材料边沿侧,这与试验获得的激光熔覆残余应力基本吻合,可用于优化损伤轴面激光熔覆工艺及质量。  相似文献   

5.
钛合金激光直接成形过程中热力耦合场的数值模拟   总被引:6,自引:0,他引:6  
为控制成形过程的热应力,根据有限元法中的生死单元技术,利用ANSYS参数化设计语言编程实现对多道多层激光金属沉积成形过程三维温度场和应力场的数值模拟,并对熔池与粉末、激光与粉末的相互作用进行能量补偿,更加准确地计算成形过程中温度场和应力场的动态变化,得到成形过程中模型温度场、温度梯度、热应力场和残余应力的分布规律.结果表明,成形件不同层上的各节点虽然被激活的时间不一样,但它们具有相似的温度变化规律;试样内的温度梯度主要沿z轴方向分布,熔池区的温度梯度非常大,但其他方向不明显;瞬态热应力集中在温度梯度变化较大的区域,这与热应力形成的机理是一致的;通过对成形件中各方向的残余应力分析,从温度梯度的角度总结各方向残余应力变化规律,侧面验证残余应力的形成机理.通过相同工艺参数下的试验验证,证明上述分析与实际情况是基本吻合的.  相似文献   

6.
利用ANSYS软件建立预置式粉层激光反应熔覆的数值模拟模型,考虑了相变潜热、辐射对流散热、表面效应单元等因素的影响;在不同的工艺参数下,用该模型对激光反应熔覆碳化物陶瓷涂层温度场进行了计算,分析了整个激光加工过程中温度场的变化情况。结果表明:激光功率和扫描速度对基体熔化厚度以及熔覆层宽度的影响都比较显著;激光功率是造成熔覆层较大温度梯度的主要因素;有限元模拟得到的最佳工艺参数得到了试验验证。  相似文献   

7.
为优化铝合金表面激光熔覆TiB_2/镍基合金复合涂层制备工艺参数,运用有限元法进行了复合涂层的三维温度场数值模拟,研究了激光功率对熔池温度场分布的影响规律,并对复合涂层的微观结构、显微硬度和耐磨性能进行了试验验证。结果表明:熔池温度和深度均随激光功率的增大呈上升趋势,当激光功率为1 600 W时,熔池温度分布适于形成具有冶金结合界面、稀释率低、显微硬度高、耐磨性能强的TiB_2/镍基合金复合涂层。  相似文献   

8.
为了确定不同扫描速度对激光重熔金属陶瓷涂层温度场的影响,采用超音速等离子喷涂工艺制备Fe40+Ni60+35WC金属陶瓷涂层;利用ANSYS软件对不同扫描速度下激光重熔过程中的温度场进行动态模拟,分析激光重熔过程温度场加热冷却的规律;通过实验确定不同扫描速度的激光重熔金属陶瓷涂层温度场。结果表明:激光重熔是一个急热骤冷的过程,其光斑中心前侧温度梯度大于后侧温度梯度,因此激光扫描速度会对重熔层温度场的分布特征影响显著;当扫描速度较低时,加热时间、能量的吸收及熔池的深度将增加,导致稀释率上升,而当扫描速度过高时,材料内部的热量不足,使得涂层中难熔相不能充分融化,从而出现未熔颗粒残留并产生气孔,导致孔洞和裂纹的增加,因此应选择合适的扫描速度。通过对重熔层温度的实验检测和分析,验证了温度场模型的可靠性与准确性。  相似文献   

9.
利用IPG光纤激光器YLR-3000激光加工系统,探究45#钢表面多道激光熔覆自熔性镍基碳化钨粉末最佳工艺参数。首先通过改变单因素变量,得出单道激光熔覆时最佳激光功率、送粉电压和扫描速度,进一步确定离焦量和搭接率的选取,最后进行激光熔覆梯度涂层实验。单道实验中最佳工艺参数为激光功率1200W、送粉电压7V、扫描速度2mm/s,离焦量3mm,表面洛氏硬度(HRC:60)是基体(HRC:22)的3倍;当Ni60A粉末作为底层材料时,平均洛氏硬度是基体(HRC:22)的2.5倍,熔覆层厚度均匀且熔池深度基本保持不变,第一道与最后一道熔覆层的高度差仅为0.10mm,当Fe基合金粉末作为底层材料时,高度差0.28mm;熔覆层组织晶粒的形状在扫描方向上呈现出逐渐增大,熔覆层底层与上层冶金结合很好,其组织晶粒过度连续;熔覆层上层显微硬度分布均匀,约是基体的3倍。激光熔覆梯度涂层材料且上层材料为自熔性镍基碳化钨粉末时,底层材料选择Ni60A粉末,得到的涂层成形质量更佳,最佳工艺参数为激光功率1200W、送粉电压7V、扫描速度2mm/s、离焦量3mm、搭接率25.47%。  相似文献   

10.
宽带激光熔覆高硬度火焰喷涂层组织和裂纹行为   总被引:2,自引:0,他引:2  
对镍基合金火焰喷涂层进行宽带激光熔覆试验,分析熔覆层组织、物相组成和硬度分布规律以及工艺参数对组织、结合强度和硬度的影响。激光熔覆过程骤冷骤热的特点使得熔覆层内存在较高的拉应力,同时,由于激光熔覆镍基合金火焰喷涂层主要由g (Fe, Ni) 固溶体和弥散分布的高硬度脆性碳化物相(Ni, B) 和(Cr, Si) 相组成,熔覆层强度和硬度显著提高而延性降低,在凝固过程残余内应力的作用下极易开裂,熔覆层裂纹为低延性穿晶脆性冷裂纹。基体的预热和熔覆后保温缓冷可有效降低温度梯度,释放残余内应力,当预热温度为300 ℃时,熔覆层裂纹消失。  相似文献   

11.
为了改善H13钢抗疲劳磨损性能,利用4kW光纤激光器在H13钢表面激光熔覆Ni60A合金涂层。利用正交试验分析各工艺参数对熔池尺寸的影响。运用光学显微镜和扫描电镜分析涂层的显微组织形貌,通过显微硬度计测试涂层截面的显微硬度分布。依据单道熔覆层的熔池尺寸,采用PCA-TOPSIS法作为评价方法。以熔宽最大、熔深和熔高最小为优化目标,得出最佳工艺参数为激光功率(P)2.2kW,扫描速度(V)20mm/s,送粉率(F)26.42g/min。该工艺参数下的熔覆层与基体呈现良好的冶金结合、无气孔裂纹等缺陷,熔覆层截面显微硬度平均高达800HV,是基体的(3~4)倍。  相似文献   

12.
为了研究激光熔覆过程中熔池形貌的变化,搭建了激光熔覆熔池在线监测系统。采用COMS相机与激光设备同轴装配的方式获取熔池图像,在分析熔池灰度直方图分布的基础上,采用三角阈值分割的自适应阈值分割法对熔池图像进行二值化,通过Canny算子检索出熔池图像的边缘,利用最小外接矩形算法获取熔池区域的长和宽。以45钢为基体、420不锈钢为熔覆粉末进行9组单道熔覆正交实验。实验结果显示,在该监测系统下测得的熔池宽度与电子显微镜下测量的实际熔覆宽度平均误差为4.5%,验证了该视觉监测系统的有效性。对监测系统下得到的熔池宽度进行极差分析,结果表明:激光功率对熔池宽度的影响最大,其次是扫描速度,最后是送粉速率;熔池宽度随激光功率的增大而增大,随扫描速度和送粉速率增大而减小。利用该监测系统获取的熔池信息与变化规律可作为激光熔覆实时控制的参考变量,为激光熔覆实现闭环控制奠定基础。  相似文献   

13.
通过有限元分析方法对不同激光功率、扫描速率以及光斑直径下TiC/Inconel 718复合材料制造过程中的热-力学特征进行了研究。通过线性组分公式确定复合材料的热物理性能参数,选用半球高斯热源模拟激光温度载荷,利用生死单元技术实现金属粉末增材过程。采用间接法进行激光熔覆热-力耦合分析,基于温度分析结果转换单元类型进行热应力计算。研究表明个工艺参数与温度、温度变化率及残余应力的变化存在一定的规律,且激光加工功率在225~250 W之间、扫描速度在1.0~1.5 mm/s之间、光斑半径在2.5~3.0 mm之间达存在最佳加工参数,可以达到较好的熔覆效果。  相似文献   

14.
激光熔覆中的温度分布和涨落对熔覆工艺的影响   总被引:4,自引:1,他引:3  
研究了激光熔覆WC-Co硬质合金的试验中,熔池中的温度分布和温度涨落对激光熔覆工艺的影响。讨论了减少这些因素对激光熔覆工艺影响的途径,并对熔池内温度分布出现双峰的原因做了探讨。  相似文献   

15.
基于ANSYS的激光熔覆成形温度场数值模拟可以真实再现熔覆工艺全过程,为优化工艺参数和预测成形缺陷提供可靠的理论依据。本文系统总结了ANSYS在熔覆成形温度场数值模拟中的应用;深入分析了有限元模型的建立、网格划分、热源形式及动态实现、熔池对流、材料动态增长描述等关键问题的处理方法;指出了ANSYS在熔覆成形温度场数值模拟领域应用中存在的问题,并在此基础上提出了今后的发展方向。  相似文献   

16.
为探究H13钢表面激光熔覆铁基合金粉末试验中工艺参数对熔覆层表面硬度和几何尺寸的影响规律并得出最佳工艺参数,试验对不同数值的激光功率、扫描速度和送粉电压所得单道熔覆层进行了表面硬度测量、显微组织观察和显微硬度测量等分析。结果表明,当扫描速度和送粉电压一定时,激光功率增加会使得熔池深度和熔覆层厚度增加,表面硬度则会先增加后降低;当扫描速度和激光功率一定时,送粉电压增加会使得熔池深度和熔覆层高度变化,表面硬度则先增加后降低。通过对峰值对应的熔覆层进行金相组织观察发现,熔覆层晶粒细小且排列紧密,并与基体形成了良好的冶金结合。熔覆层截面显微硬度分布表明,其熔覆层的平均显微硬度明显高于基体。  相似文献   

17.
镍基高温合金Inconel718具有良好的高温强度和高耐蚀性能,广泛应用于制造航空工业特别是燃气涡轮发动机的高温构件。然而最终的成形磨削工艺常常在零件表面形成较大的残余拉应力,这对其疲劳强度和寿命等服役性能极为不利。研究和开发了一种基于磨削区的热温度梯度调节原理的复合磨削工艺,以主动调节Inconel718零件表面残余应力分布。在磨削工艺中利用控制良好的感应加热装置将热源嵌入到工件亚表层,通过对所需的温度梯度分布的主动控制实现对残余应力的调节。结果表明,通过合理调节感应加热和磨削工艺参数,可以获得较小的表面残余拉应力甚至压应力分布。本研究能够减少当前生产中为获得表面残余压应力而额外采取的喷丸等后续工艺,实现磨削残余应力的在线主动控制,且该技术也可以扩展推广应用到其他材料以及其他加工工艺中,如切削、铣削等。  相似文献   

18.
采用"三光束光内同轴送丝"激光熔覆新方法研究可以获得表面质量较高单道熔覆层的工艺参数组合方案。建立三光束激光熔覆工艺参数与熔覆层表面形貌关系以及几何特征变化规律的数学模型,通过激光提供的单位能量密度E1与丝材所需的能量密度E2之间比值关系判断熔覆层表面形貌状态,工艺参数和熔覆层几何特征关系的数学模型预测熔覆层几何特征变化规律,并采用单因素试验法进行验证。研究结果如下:E1/E21,熔池能量"不足",1.1≥E1/E2≥1.0,熔池能量处于"不足"到"充足"过渡阶段,以及E1/E21.6,熔池能量"过剩",这三种情况形成的熔覆层表面质量较差;只有当1.5≥E1/E21.1,熔池能量"充足"能够充分熔化进入熔池的丝材,且丝材能够以连续平稳的"搭桥过渡"方式熔入熔池,熔覆层表面连续光滑,质量较高;熔覆层几何特征变化规律:数学模型预测值变化趋势与试验值基本吻合,离焦量减小,熔覆层宽度W减小,高度H增大,宽高比a减小;激光功率增大,熔覆层宽度W增大,高度H减小,宽高比ɑ增大。扫描速度增大,熔覆层宽度W减少,高度H减少,宽高比a略有增加。送丝速度增大,熔覆层宽度W和高度H都会增大,宽高比ɑ减小。综上采用"三光束光内同轴送丝"新方法对不锈钢304材料的丝材和基材进行激光熔覆试验,工艺参数组合方案满足1.5≥E1/E21.1,可以制备出表面形貌佳熔覆层。  相似文献   

19.
由于激光熔覆过程的工艺复杂性和材料结晶的多样性对熔覆层性能影响较大,为研究熔覆层的微观组织,从不同工艺参数出发,通过Abaqus仿真得到不同工艺参数下的温度场分布情况,然后计算出熔覆层不同深度的温度梯度、凝固速度和凝固方向,讨论了柱状晶开始转化等轴晶G/R图内的CET曲线位置及其与仿真温度场特征曲线的关系,分析了熔池凝固时定向流动对枝晶生长中断的影响。对比实验结果,较大线能量可以提高熔覆层中柱状树枝晶的比例,使组织结构紧密均匀,减少熔覆层内因硬质相分布不均导致的缺陷生成量。同时也要控制工艺参数防止其生长到熔覆层顶部。工艺参数也会影响稀释率,较大的稀释率会改变金相成分,提高熔覆层与基体性能的一致性,从而提高熔覆层断裂强度。  相似文献   

20.
为了研究激光工艺参数对激光熔覆熔池凝固微观组织的影响,考察了不同工艺参数下试验件的微观组织,并测定其元素分布及维氏显微硬度。结果显示:激光工艺参数影响熔池晶粒的尺寸及生长方向;熔池凝固形成粗大β柱状晶,晶内组织由针状α′马氏体交叉形成的网篮组织构成;试验件熔覆层晶粒及晶界不同区域没有发生严重的溶质富集或贫化等偏析现象;基体、热影响区到熔覆层的显微硬度依次增大,随能量密度增大,熔覆层和热影响区的显微硬度均降低,反之,熔覆组织的显微硬度均增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号