首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a new approach for the optimization of the electrical discharge machining (EDM) process with multiple performance characteristics based on the orthogonal array with the grey relational analysis has been studied. A grey relational grade obtained from the grey relational analysis is used to solve the EDM process with the multiple performance characteristics. Optimal machining parameters can then be determined by the grey relational grade as the performance index. In this study, the machining parameters, namely workpiece polarity, pulse on time, duty factor, open discharge voltage, discharge current, and dielectric fluid are optimized with considerations of multiple performance characteristics including material removal rate, surface roughness, and electrode wear ratio. Experimental results have shown that machining performance in the EDM process can be improved effectively through this approach.  相似文献   

2.
超声振动辅助气中放电加工技术避免了常用的煤油等工作液作为介质带来的环境污染问题,具有工作环境清洁、适用范围广、加工效率高、工具电极简单等优点。实验研究了电压、脉冲宽度、峰值电流、超声振幅及气体介质压力等参数对加工效率、工件表面粗糙度及电极损耗的影响.并对试验结果进行了分析。  相似文献   

3.
This research investigates the effects of electrode lead and tilt angles and dielectric fluid flow rate on material removal rate, tool electrode wear ratio, and surface roughness in near-dry electrical discharge machining (EDM) milling process. Computational fluid dynamics (CFD) model is developed to predict the dielectric fluid flow rate and qualitatively compare with the experimentally measured EDM material removal rate. The optimum lead angle, which maximized material removal rate and minimized tool electrode wear ratio, was found. The decrease in the lead angle has a negative effect on the roughness of machined surface. The increase in tilt angle reduces the material removal rate and increases the tool electrode wear ratio. The change in tilt angle does not have a significant effect on the surface roughness and can be used to prevent gouging in finishing EDM milling. This study shows that the material removal rate is linearly proportional to the mass flow rate of air and kerosene mixture, the tool electrode wear ratio is inversely related to the mass flow rate of air and kerosene mixture, and the average surface roughness does not have a good correlation with the flow rate of the mixture.  相似文献   

4.
The study investigated the feasibility of modifying the surface of Al–Zn–Mg alloy by a combined process of electric discharge machining (EDM) with ball burnish machining (BBM). A novel process that integrates EDM and BBM is also developed to conduct experiments on an electric discharge machine. Machining parameters of the combined process, including machining polarity, peak current, power supply voltage, and the protruding of ZrO2, are chosen to determine their effects on material removal rate, surface roughness and the improvement ratio of surface roughness. In addition, the extent to which the combined process affects surface modification is also evaluated by microhardness and corrosion resistance tests. Experimental results indicate that the combined process of EDM with BBM can effectively improve the surface roughness to obtain a fine-finishing and flat surface. The micropores and cracks caused from EDM are eliminated during the process as well. Furthermore, such a process can reinforce and increase the corrosion resistance of the machined surface after machining.  相似文献   

5.
To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm the benefits of this hybrid process.The appropriate abrasives delivered by high speed gas media were incorporated with an EDM in gas system to construct the hybrid process of AJM and EDM,and then the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process to increase the efficiency of material removal and reduce the surface roughness.In this study,the benefits of the hybrid process were determined as the machining performance of hybrid process was compared with that of the EDM in gas system.The main process parameters were varied to explore their effects on material removal rate,surface roughness and surface integrities.The experimental results show that the hybrid process of AJM and EDM can enhance the machining efficiency and improve the surface quality.Consequently,the developed hybrid process can fit the requirements of modern manufacturing applications.  相似文献   

6.
Improvement of Dry EDM Characteristics Using Piezoelectric Actuator   总被引:1,自引:0,他引:1  
This paper describes improvement of the machining characteristics of dry electrical discharge machining (dry EDM) by controlling the discharge gap distance using a piezoelectric actuator. Dry EDM is a new process characterized by small tool electrode wear, negligible damage generated on the machined surface, and significantly high material removal rate especially when oxygen gas is used. However, the narrow discharge gap length compared with conventional EDM using oil as the dielectric working fluid results in frequent occurrence of short circuiting which lowers material removal rate. A piezoelectric actuator with high frequency response was thus introduced to help control gap length of the EDM machine. To elucidate the effects of the piezoelectric actuator, an EDM performance simulator was newly developed to evaluate the machining stability and material removal rate of dry EDM.  相似文献   

7.
Titanium and its alloys have high chemical reactivity with most of the cutting tools. This makes it difficult to work with these alloys using conventional machining processes. Electrical discharge machining (EDM) emerges as an alternative technique to machining these materials. In this work, it is investigated the performance of three special grades of graphite as electrodes when ED-Machining Ti6Al4V samples under three different regimes. The main influences of electrical parameters are discussed for the samples material removal rate, volumetric relative wear and surface roughness. The samples surfaces were evaluated using SEM images, microhardness measurements, and x-ray diffraction. It was found that the best results for samples material removal rate, surface roughness, and volumetric relative wear were obtained for the graphite electrode with 10-μm particle size and negative polarity. For all samples machined by EDM and characterized by x-ray (XRD), it was identified the presence of titanium carbides. For the finish EDM regimes, the recast layer presents an increased amount of titanium carbides compared to semi-finish and rough regimes.  相似文献   

8.
Electrical discharge machining (EDM) process is widely used to process hard materials in the industry. Electrical discharge distribution effects can be achieved by the addition of Al powder in the dielectric. A fine surface roughness value of the workpiece is thus obtained. However, the electrostatic force among fine Al particles is found to agglomerate the Al powders in the dielectric. A surfactant can be adopted to separate the Al powder in the dielectric homogenously. A better surface even the mirror-like quality of the EDMed workpiece is thus desired. In the study, the effect of surfactant and Al powders added in the dielectric on the surface status of the workpiece after EDM is investigated.It is observed the best distribution effect is found when the concentrations of the Al powder and surfactant in the dielectric are 0.1 and 0.25 g/L, respectively. An optimal surface roughness (Ra) value of 0.172 μm is achieved under the following parameter—positive polarity, discharge current 0.3 A, pulse duration time 1.5 μs, open circuit potential 140 V, gap voltage 90 V and surfactant concentration 0.25 g/L.The surface roughness status of the workpiece has been improved up to 60% as compared to that EDMed under pure dielectric with high surface roughness Ra of 0.434 μm.  相似文献   

9.
This study investigates the influence of the machining characteristics on pure titanium metals using an electrical discharge machining (EDM) with the addition of urea into distilled water. Additionally, the effects of urea addition on surface modification are also discussed. In the experiments, machining parameters such as the dielectric type, peak current and pulse duration were changed to explore their effects on machining performance, including the material removal rate, electrode wear rate and surface roughness. Moreover, the elemental distribution of nitrogen on the machined surface was qualitatively determined by EPMA to assess the effects on surface modification. Micro hardness and wear resistance tests were performed to evaluate the effects of the reinforced surface.Experimental results indicate that the nitrogen element decomposed from the dielectric that contained urea, migrated to the work piece, forming a TiN hard layer, resulting in good wear resistance of the machined surface after EDM.  相似文献   

10.
Dry electrical discharge machining is one of the novel EDM variants, which uses gas as dielectric fluid. Experimental characterization of material removal in dry electrical discharge drilling technique is presented in this paper. It is based on six-factor, three-level experiment using L27 orthogonal array. All the experiments were performed in a ‘quasi-explosion’ mode by controlling pulse ‘off-time’ so as to maximize the material removal rate (MRR). Furthermore, an enclosure was provided around the electrodes with the aim to create a back pressure thereby restricting expansion of the plasma in the dry EDM process. The main response variables analyzed in this work were MRR, tool wear rate (TWR), oversize and compositional variation across the machined cross-sections. Statistical analysis of the results show that discharge current (I), gap voltage (V) and rotational speed (N) significantly influence MRR. TWR was found close to zero in most of the experiments. A predominant deposition of melted and eroded work material on the electrode surface instead of tool wear was evident. Compositional variation in the machined surface has been analyzed using EDAX; it showed migration of tool and shielding material into the work material. The study also analyzed erosion characteristics of a single-discharge in the dry EDM process vis-á-vis the conventional liquid dielectric EDM. It was observed that at low discharge energies, single-discharge in dry EDM could give larger MRR and crater radius as compared to that of the conventional liquid dielectric EDM.  相似文献   

11.
采用晶体管脉冲电源,在氧气辅助氮气等离子体射流、氮氧混合等离子体射流及外部压缩空气辅助氮气等离子体射流等不同冷等离子体介质中进行了微细电火花加工特性的实验研究,以期确定加工过程稳定的工艺条件,达到提高加工效率和加工质量的目的。在氧气辅助氮气等离子体射流实验中发现,随着氧气流量的增加,材料去除速度和表面粗糙度值均有增大趋势;采用压缩空气辅助氮气等离子体射流的电火花加工在表面质量、边缘质量方面均优于氧气辅助氮气等离子体射流加工。  相似文献   

12.
A versatile process of electrical discharge machining (EDM) using magnetic force assisted standard EDM machine has been developed. The effects of magnetic force on EDM machining characteristics were explored. Moreover, this work adopted an L18 orthogonal array based on Taguchi method to conduct a series of experiments, and statistically evaluated the experimental data by analysis of variance (ANOVA). The main machining parameters such as machining polarity (P), peak current (Ip), pulse duration (τp), high-voltage auxiliary current (IH), no-load voltage (V) and servo reference voltage (Sv) were chosen to determine the EDM machining characteristics such as material removal rate (MRR) and surface roughness (SR). The benefits of magnetic force assisted EDM were confirmed from the analysis of discharge waveforms and from the micrograph observation of surface integrity. The experimental results show that the magnetic force assisted EDM has a higher MRR, a lower relative electrode wear ratio (REWR), and a smaller SR as compared with standard EDM. In addition, the significant machining parameters, and the optimal combination levels of machining parameters associated with MRR as well as SR were also drawn. Moreover, the contribution for expelling machining debris using the magnetic force assisted EDM would be proven to attain a high efficiency and high quality of surface integrity to meet the demand of modern industrial applications.  相似文献   

13.
The gap conditions of electrical discharge machining (EDM) would significantly affect the stability of machining progress. Thus, the machining performance would be improved by expelling debris from the machining gap fast and easily. In this investigation, magnetic force was added to a conventional EDM machine to form a novel process of magnetic force-assisted EDM. The beneficial effects of this process were evaluated. The main machining parameters such as peak current and pulse duration were chosen to determine the effects on the machining characteristics in terms of material removal rate (MRR), electrode wear rate (EWR), and surface roughness. The surface integrity was also explored by a scanning electron microscope (SEM) to evaluate the effects of the magnetic force-assisted EDM. As the experimental results suggested that the magnetic force-assisted EDM facilitated the process stability. Moreover, a pertinent EDM process with high efficiency and high quality of machined surface could be accomplished to satisfy modern industrial applications.  相似文献   

14.
This study proposes a novel combined process that integrates electrical discharge machining (EDM) and ultrasonic machining (USM) to investigate the machining performance and surface modification on Al–Zn–Mg alloy. In the experiment, TiC particles were added into the dielectric to explore the influence of the combined process on the material removal rate (MRR), the relative electrode wear ratio (REWR), the surface roughness and the expansion of the machined hole. The elemental distributions of titanium and carbon on the cross-section were quantitatively determined using an electron probe micro-analyzer (EPMA). Microhardness and wear resistance tests were conducted to evaluate the modifications on the machined surface caused by the combined process. The experimental results show that the combined process was associated with improved machining performance. The combination of EDM with USM yielded an alloyed layer that improved the hardness and wear resistance of the machined surface.  相似文献   

15.
A new gap control strategy for five-axis milling using near-dry electrical discharge machining (EDM) has been experimentally investigated. The conventional EDM control strategy only allows the retraction of the electrode in the direction of machining trajectory, which results in inefficient gap control when the electrode is not perpendicular to the workpiece. The new gap controller is capable of retracting the electrode in the direction of its orientation. This enables more efficient enlargement of the discharge gap leading to faster recovery of average gap voltage. Experimental results show a 30% increase in material removal rate while the tool electrode wear ratio and surface roughness are not affected. Furthermore, EDM efficiency is improved due to the change in the electrode retraction in its axial direction. The gain tuning of the proposed controller is also discussed. This study shows the direction of electrode retraction is important for five-axis near-dry EDM milling.  相似文献   

16.
石墨电极电火花加工性能的影响因素分析   总被引:2,自引:0,他引:2  
影响石墨电极电火花加工性能的因素很多,各因素的合理配合对电火花加工特性有重要的影响。分析了主轴性能、脉冲电源及智能控制、工作液、电参数和加工极性选择等对石墨电极加工性能的影响,为生产实践提供了理论依据。  相似文献   

17.
The electrical discharge machining (EDM) process is, by far, the most popular amongst the non-conventional machining processes. The technology is optimum for accurate machining of complex geometries in hard materials, as those required in the tooling industry. However, although a large number of EDM machines are sold every year, scientific knowledge of the process is still limited. The complex nature of the process involves simultaneous interaction of thermal, mechanical, chemical and electrical phenomena, which makes process modelling very difficult. In this paper a new contribution to the simulation and modelling of the EDM process is presented. Temperature fields within the workpiece generated by the superposition of multiple discharges, as it happens during an actual EDM operation, are numerically calculated using a finite difference schema. The characteristics of the discharge for a given operation, namely energy transferred onto the workpiece, diameter of the discharge channel and material removal efficiency can be estimated using inverse identification from the results of the numerical model. The model has been validated through industrial EDM tests, showing that it can efficiently predict material removal rate and surface roughness with errors below 6%.  相似文献   

18.
The electrical discharge machining (EDM) process produces the recast layer with or without cracks on the surface that requires a remedial post-treatment in the manufacture of critical or highly stressed surfaces. One of the frequently used post-treatment processes is also the abrasive electrochemical grinding (AECG) and it has been widely used in the precision machining of difficult-to-cut materials due to an enhanced surface integrity and productivity. The aim of this study is to investigate improvability of surface integrity in terms of machining voltage, electrolyte flow rate and table feed rate parameters of AECG in EDMed Ti6Al4V alloy. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrograph (EDS) and surface roughness measurement were performed to study the surface characteristics of the machined samples. Experimental results indicate that the AECG process effectively improves the surface roughness and eliminates the EDM damages completely by setting suitable grinding parameters.  相似文献   

19.
This study focuses on using ultrasonic to improve the efficiency in electrical discharge machining (EDM) in gas medium. The new method is referred to as ultrasonic-assisted electrical discharge machining (UEDM). In the process of UEDM in gas, the tool electrode is a thin-walled pipe, the high-pressure gas medium is applied from inside, and the ultrasonic actuation is applied onto the workpiece. In our experiment, the workpiece material is AISI 1045 steel and the electrode material is copper. The experiment results indicate that (a) the Material Removal Rate (MRR) is increased with respect to the increase of the open voltage, the pulse duration, the amplitude of ultrasonic actuation, the discharge current, and the decrease of the wall thickness of electrode pipe; and (b) the surface roughness is increased with respect to the increase of the open voltage, the pulse duration, and the discharge current. Based on experimental results, a theoretical model to estimate the MRR and the surface roughness is developed.  相似文献   

20.
The last decade has seen an increasing interest in the novel applications of electrical discharge machining (EDM) process, with particular emphasis on the potential of this process for surface modification. Besides erosion of work material during machining, the intrinsic nature of the process results in removal of some tool material also. Formation of the plasma channel consisting of material vapours from the eroding work material and tool electrode; and pyrolysis of the dielectric affect the surface composition after machining and consequently, its properties. Deliberate material transfer may be carried out under specific machining conditions by using either composite electrodes or by dispersing metallic powders in the dielectric or both. This paper presents a review on the phenomenon of surface modification by electric discharge machining and future trends of its applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号