首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multi-pass weld-repair of heat-resistant cast steels is carried out using an automated shielded metal arc welding (SMAW) process, with various filler materials and pre-heating at 400 °C. Specimens weld-repaired with a filler material more resistant than the heat-resistant cast steel (over-matching) generally crack within the base metal following the tenth filling pass, whereas specimens buttered with a soft alloy prior to welding remain free of cracks.The high temperature strain-controlled fatigue lifetime of material weld-repaired without buttering is lower than that of bulk initial material. This is due to an increase of the stress amplitude as a result of the so-called over-matching. In the case of material welded following a prior buttering, the fatigue lifetime is reduced because of the stress tri-axiality generated in the thin soft layer which prevents its plastic flow. As a consequence, it is concluded that even though buttering prevents cracking efficiently during welding, it is not acceptable as far as fatigue performance, especially lifetime, is concerned.  相似文献   

2.
Magnesium alloys has a wide application prospect due to their good properties, such as high specific strength and specific stiffness, but the susceptibility of liquation cracking is also pretty high. The liquation in partially melted zone of AZ-series magnesium alloys were investigated with circular-patch welding test. The AZ91, AZ31 base alloys were welded with AZ61 and AZ92 filler wires by using the cold metal transter metal inert-gas (CMT-MIG) welding. The results show that, the liquation occurred along the weld edge of AZ91 with the eutectic reaction occurring between gamma(Mg17Al12) phase and Mg-rich phase. The liquation susceptibility of AZ31 was pretty low as gamma(Mg17Al12) was not present in base metal of AZ31. Meanwhile, a new method for predicting liquation cracking based on binary phase diagram was proposed. When the initial solidification temperature of weld is higher and the solidification temperature range of weld is shorter than those of base metal, the liquation crack susceptibility of weld is mostly higher. When the initial solidification temperature of weld is close to or below that of base metal, and the solidification temperature range of weld is close to or longer than that of base metal, the liquation cracking susceptibility of weld is lower. This method worked well on predicting the effect of composition of base metal and filler wires on liquation cracking, and the predicting results are consistent with the experimental results. That is, the liquation cracking susceptibility is higher with AZ91 base metal used than that with AZ31 base metal. And, the liquation cracking susceptibility is lower with AZ92 filler wire than that with AZ61 filler wire.  相似文献   

3.
Abstract

It is demonstrated how the current trend towards high speed, narrow groove welding, and the corresponding shift towards high base metal dilution, may result in decreased weldability for 6xxx and 7xxx aluminium alloys. In particular, variations in base metal dilution for extrusion alloys 6082 and 7108 have been examined for welds made with 5183, 5356, 5654, and 4043 filler alloys, particularly at high dilution ratios. The less common filler alloys 5039 and Safra 66 are also considered. Dilution curves superimposed upon existing hot cracking curves show that cracking susceptibility increases rapidly with base metal dilution for these alloys. Establishing an upper limit for dilution to avoid hot cracking, for a specific engineering application, also requires a knowledge of restraining conditions. For conditions of high restraint, i.e. rigid fixturing, enforcing an upper limit for base metal dilution will become critical. The effect of dilution on weld strength is also considered.  相似文献   

4.
High-tensile strength 950 MPa steel, HT950, which is steel used in penstocks, was developed to provide two vital properties: fracture arrest to stop brittle fracture and high weldability. This steel has been already used for penstocks in some hydropower plants in Japan. To widely apply high-tensile strength steels in penstocks in the future, fewer restrictions against their welding conditions such as pre-heat and post-heat temperature controls are required. One proposed solution is to undermatch the strength of the filler metal to that of the base material. This allows less pre-heating, or no pre-heating at all, and the use of conventional rod and process management is easier. Previous studies have shown that there are softening conditions under which the strength of the joint can be considered as that of the base material. However, the shape and distribution of the soft region are assumed to be ideal. In this study, the method for calculating the change of the strength in heat-affected zone (HAZ) during the welding process is discussed. Then, the influence of the strength distribution of HAZ and welded zone to the strength of the joint is investigated by a wide plate test in both experiment and elastic–plastic analysis. Applicability of undermatched joints to penstock fabrication is considered by these discussions. As a result, it is concluded that the Vickers hardness distribution in the HAZ can be estimated by the method which is proposed in this study and the strength of the under-matched joints is high enough in both experiment and analysis in which the Vickers hardness distribution is considered. From these conclusions, the applicability of undermatched joints, of which the weld metal is the HT570 class, to penstock fabrication is conformed.  相似文献   

5.
Abstract

Equiaxed zone (EQZ) formation in Al–Zn–Mg alloy welds as affected by base metal, filler metal chemistry and weld techniques is studied. Filler metal chemistry and welding techniques have great influence on the formation of EQZ microstructure as base metal composition has. In an effort to characterise the equiaxed grain zone formation in Al–Zn–Mg alloy welds two commercial Al alloys AA7018 and RDE40 were selected. Gas tungsten arc welding in continuous current, pulsed current and arc oscillation mode were applied to weld the base materials. The influence of Sc containing fillers have been studied and compared with the commercial filler material. Mechanical and metallurgical characterisation were carried out in the EQZ. Intergranular corrosion in EQZ was studied according to ASTM G 110-92. Results reveals that RDE40 with low solute contents showed wider EQZ but relatively better corrosion and mechanical properties compared to AA7018 EQZ. Gas tungsten arc welding in pulsed and arc oscillation mode fusion boundary region exhibits better corrosion and mechanical properties compared to continuous current mode welds. Addition of Sc to the AA5556 filler combined with pulsed mode resulted in elimination of EQZ, better corrosion and mechanical properties compared to welds made with conventional AA5556 filler and also the presence of Sc within the EQZ so called unmixed zone has been observed.  相似文献   

6.
Abstract

The use of a filler metal to facilitate the gas tungsten arc (GTA) welding of ferrous alloys to titanium alloys has been investigated. Semi-empirical rules have been applied to identify alloying elements that would resolve the important problems of brittle intermetallic formation and weld cracking. Vanadium was found appropriate. The GTA welds between a low carbon steel and Ti–15V–3Cr–3Sn–3Al made with a vanadium filler wire resisted cracking better than comparable autogenous welds. However, the presence of a hard, brittle eutectic microconstituent along the ferrous side of the fusion boundary drastically limited the gain in weldability. As anticipated, analysis of GTA welds produced with vanadium filler wire suggested the presence of a ternary (Fe,Ti,V) single phase. Although cracking was reduced with vanadium, the practical benefit of a vanadium filler wire for GTA welding is small because the weld metals remain very hard and brittle.  相似文献   

7.
The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.  相似文献   

8.
Ballistic performance of armor steel welds is very poor due to the usage of low strength and low hardness austenitic stainless steel fillers, which are traditionally used to avoid hydrogen induced cracking. In the present investigation, an attempt has been made to study the effect of plasma transferred arc hardfaced interlayer thickness on ballistic performance of shielded metal arc welded armor steel weldments. The usefulness of austenitic stainless steel buttering layer on the armor grade quenched and tempered steel base metal was also considered in this study. Joints were fabricated using three different thickness (4, 5.5, and 7 mm) hardfaced middle layer by plasma transferred arc hardfacing process between the top and bottom layers of austenitic stainless steel using shielded metal arc welding process. Sandwiched joint, in addition with the buttering layer served the dual purpose of weld integrity and ballistic immunity due to the high hardness of hardfacing alloy and the energy absorbing capacity of soft backing weld deposits. This paper will provide some insight into the usefulness of austenitic stainless steel buttering layer on the weld integrity and plasma transferred arc hardfacing layer on ballistic performance enhancement of armor steel welds.  相似文献   

9.
Abstract

Laser beam welding is now a common manufacturing method for a wide range of steel products from automobiles to razor blades. However, the process has only recently been approved for critical applications involving aluminium alloys, notably in the aerospace and automotive industries. The properties of aluminium alloys influence the interaction between the beam and the material to a far greater extent than for steels. The challenge of developing industrial welding procedures has therefore been considerable. The present review describes the effects of CO2 and Nd–YAG laser beam processing parameters and the properties of the most common wrought aluminium alloys on the characteristics of welded joints. Porosity, solidification cracking, and poor weld bead geometry are shown to be the most frequently encountered imperfections. These can be eliminated through the use of appropriate filler materials, process gases, material preparation, and in some instances, adaptive control systems. Very little work has been reported on the corrosion properties of laser welded aluminium alloys. Experimental processing parameters are presented and compared using an analytical model, which can also be employed for predictive purposes. A number of industrial applications are described. These demonstrate that, for specific alloys, the process is now sufficiently well understood to be approved for high volume production, particularly in the transport industries.  相似文献   

10.
Welding of high-strength low-alloy (HSLA) steels involves the use of low-strength, equal-strength, and high-strength filler materials (electrodes) compared with the parent material, depending on the application of the welded structures and the availability of filler material. In the present investigation, the fatigue crack growth behavior of weld metal (WM) and the heat-affected zone (HAZ) of undermatched (UM), equally matched (EM), and overmatched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) has been used to fabricate the butt joints. A center-cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behavior of welded joints, utilizing a servo-hydraulic-controlled fatigue-testing machine at constant amplitude loading (R=0). The effect of notch location on the fatigue crack growth behavior of strength mismatched HSLA steel weldments also has been analyzed.  相似文献   

11.
General resistance of weld seams with a view to stress corrosion cracking and corrosion fatigue The corrosion of welds is due to thermal effects during welding which give rise to structural changes and, frequently, compositional changes in the transition zone. The welded material is rapidly cooled and may thus be heterogeneous and may present residual stresses resulting in increased susceptibility to selective and stress corrosion. The manganese content is of high importance in low alloy steels, as well as residual martensite or austenite embedded in a ferrite matrix. Low ferrite contents are generally beneficial because they counteract high temperature cracking; however, ferrite contents should be hept below 10% in order to prevent the formation of a continuous network giving rise to selective corrosion. Corrosion susceptibility may also be produced by carbide or carbonitride precipitation in austenitic and ferritic steels and nickel base alloys. Weld zones in aluminium alloys are attacked in rare cases (e.g. by HNO3) and the susceptibility of Ta, Zr and Ti depends from the properties of the protective atmospheres.  相似文献   

12.
Advanced ultrasupercritical steam conditions of up to 760°C and 34·5 MPa have been investigated in various programmes around the world over the last two decades. To date, much progress has been made, and three candidate materials, namely ferritic, austenitic and nickel base superalloys, have been investigated for high temperature strength, corrosion resistance and weldability. In an earlier published paper, welding and weldability of ferritic alloys were discussed. This paper considers the unique weldability characteristics for utilisation of austenitic stainless steels in future advanced ultrasupercritical fossil power plant designs and covers topics such as fundamentals of austenitic stainless steel welds, including weldability, filler metals and dissimilar metal welds, and discusses the prognosis for this class of materials for advanced ultrasupercritical fossil fired power plants.  相似文献   

13.
关于铜钢复合板的焊接性试验研究及应用   总被引:1,自引:1,他引:1  
  相似文献   

14.
双相不锈复合钢板埋弧自动焊   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了H11/X2CrNiMoN22.5双相不锈复合钢板埋弧自动焊工艺,焊接材料的选择及其焊接性。结果表明,复层焊缝的δ铁素体含量在35%~45%内,其焊接性优良。过渡层的焊接采用较弱焊接规范和单道焊工艺,以控制较小的稀释率和良好的焊缝成形,防止在与基层焊缝的熔合线附近产生大量马氏体组织和其它硬化相。H11/X2CrNiMoN22.5双相不锈复合钢板埋弧自动焊焊接接头具有良好的力学性能,复层焊缝具有极为优良的抗晶间腐蚀和应力腐蚀的能力。本研究为煤气工程中汽化炉的制造选定了合适的焊接材料并制定了最佳埋弧自动焊工艺。  相似文献   

15.
Abstract

Cracking, or disbonding, along the fusion boundary in dissimilar metal welds has been a persistent problem, particularly in applications where austenitic alloys are clad on to structural steels for corrosion protection. Many failures in dissimilar metal welds occur as a result of cracking along a boundary that runs parallel to the fusion boundary in the adjacent weld metal. A preliminary investigation was undertaken to determine the nature and evolution of boundaries and structure in dissimilar metal welds using a simple ternary system composed of a pure iron substrate and a 70Ni–30Cu (Monel) filler metal. Changes in base metal dilution were found to alter the evolution of boundaries and structures near the fusion boundary dramatically. Optical metallography and electron microanalysis reveal that the resulting weld microstructures and boundaries are similar to those observed in engineering materials used for cladding and corrosion resistant overlay. Transmission electron diffraction analysis revealed orientation relationships between adjacent base metal and weld metal grains at the fusion boundary to be different from the cube on cube relationship normally observed in similar metal welds. A model is proposed describing the evolution of the boundary most susceptible to cracking in dissimilar welds.  相似文献   

16.
Steels with elasticity limits between 650 and 680 MPa include thermomechanical steels and quenched and tempered steels. Thermomechanical steels have excellent weldability, but, nevertheless, require fillers with low diffusible H2 levels, and a rigorous control over the welding operations, due to the molten zone. Quenched and tempered steels require almost automatic recourse to preheating, and frequently post-heating, but at moderate temperatures. The heterogeneity of the commercial range of base metals available, and the poverty of the range of filler materials with very high elasticity limits, are crucial problems. The risk of cold cracking in the molten zone is very high and, sadly, less well understood than that of cold cracking in the HAZ. Given that the maintenance of good mechanical characteristics requires limiting the T r 800–500, the weldability range is very narrow. The welding of these steels is not intrinsically complex, but requires considerable rigour.  相似文献   

17.
The extended use of powder metal components can be improved by the use of welding joining methods. This work investigates the weldability of iron-based powder metal alloys (Fe–Ni, Fe–Ni–P alloys) using the pulsed gas tungsten arc welding process (GTAW) with three different filler metals (AWS R 70S-6, AWS R 309L, AWS R Fe–Ni). Results revealed that the Fe–Ni powder metal alloy does not present any metallurgical difficulty concerning the weldability for all types of filler metal studied. The Fe–Ni–P powder metal alloy, microstructural examinations showed that, despite its high content of phosphorus (0.25 wt%), the utilization of pulsed GTAW process with stainless steel 309L filler metal resulted in welds free of porosities and solidification cracks. Metallographics examinations suggest that the absence of solidification cracks in this alloy can be mainly attributed to the presence of delta ferrite in the stainless steel weld metal which absorbed part of the phosphorus and significantly reduced the formation of the Fe3P low-melting eutectic in the weld pool during cooling. In contrast, solidification cracks were observed when joining the Fe–Ni–P powder metal alloy using RFe–NI and R70S-6 filler metals. Hardness tests carried out indicated a heat affected zone (HAZ) with no excessive hardening for all alloys studied. Furthermore, tensile tests showed that the fractures always occurred in the base metal with tensile strength slightly superior to the value of unwelded samples. As a result, this investigation showed the feasibility of joining iron-based powder metal alloys by the pulsed GTAW process since a rigid control of the heat input is implemented together with an adequate choice of the filler metal, especially when welding the Fe–Ni–P alloy.  相似文献   

18.
以308L不锈钢焊丝作为填充材料,采用光纤激光-MIG电弧复合焊在5mm厚的球墨铸铁上进行焊接,重点关注了工艺参数对裂纹倾向的影响,获得了成形良好且无裂纹的焊接接头.结果表明,随着激光功率的减小和电弧电流的增加,接头熔合比减小,裂纹倾向降低.接头显微硬度和组织的分析结果表明,由熔合比带来的碳含量变化是影响裂纹倾向的直接原因.在厚度10mm的球墨铸铁试件上开X形坡口进行多层多道焊,所得焊接接头的强度和断后伸长率分别为母材的73%和20%,接头断裂机制为脆性断裂,半熔化区的莱氏体是造成断裂的原因.  相似文献   

19.
Abstract

Fossil fuels continue to be the primary source of energy in the world. The worldwide demand for clean and affordable energy will continue to grow, and a strong emphasis has been placed on increasing the efficiency and reducing the carbon footprint of new and existing fossil fired power plants. Throughout Asia, Europe and the USA, this demand is being met with programmes to develop advanced materials that have enhanced high temperature creep and corrosion properties. A new class of ferritic alloys, known as creep strength enhanced ferritic steels, has been developed to meet these requirements. This article focuses on the weldability of the advanced ferritic alloys used in boilers and boiler components of ultrasupercritical coal fired power plants. This review focuses on alloy selection; welding and weldability issues, including in service weld failure such as type IV cracking; welding of dissimilar metals; and weld repair. Future articles will address the welding and weldability issues of two other classes of materials, namely austenitic stainless steels and nickel base superalloys.  相似文献   

20.
To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号