首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用微束等离子弧热源在磨损表面制备了NiCrBSi熔覆层,实现了大磨损量的电动机轴颈的修复。为了表征修复效果,对熔覆层的微观组织、显微硬度和相对耐磨性进行了测试,结果表明,其微观组织多为等轴晶,在结合面位置有少量的枝晶,熔覆层且和基体结合比较紧密,界面分明,形成了较好的冶金结合。熔覆层的显微硬度较高,表明微束等离子熔覆技术可实现大磨损量轴颈的修复,修复表面组织细密、硬度较高,且具有较高的耐磨性。  相似文献   

2.
采用激光熔覆方法在NAK80模具钢表面制备钴基合金熔覆层,用扫描电镜、X射线衍射仪分析了熔覆层的显微组织,通过干滑动摩擦试验研究了熔覆层的摩擦磨损性能,分析了其磨损机制,并用三维表面形貌仪观察磨损试样的表面形貌。结果表明:熔覆层的主要组成相为Cr23C6、Co3Mo2Si、MoC、FeCr和γ-Co;熔覆层由涂层与基体界面处的平面晶区、涂层中部的胞状树枝晶区和表层的网状等轴晶粒区组成;经激光熔覆处理后的NAK80模具钢表面硬度和耐磨性得到了显著改善,与NAK80模具钢相比,熔覆层表面的平均摩擦因数降低了约34%,比磨损率下降了约91.3%;熔覆层的磨损机制为粘着磨损和轻微的显微切削。  相似文献   

3.
试验采用Nd:YAG 激光器在AZ91D镁合金表面激光熔覆不同La2O3含量的Al-Cu涂层,借助扫描电子显微镜、能谱仪、X射线衍射仪、显微硬度计和滑动磨损试验机,分析稀土对熔覆层表面形貌、显微组织、物相结构、显微硬度和耐磨性能的影响。研究结果表明:稀土氧化物La2O3在Al-Cu涂层中能够细化晶粒,改善熔覆层的质量,并生成稀土化合物Mg17La2和LaAl3;当添加质量分数为1.2%的La2O3时,熔覆层组织均匀,晶粒细小,显微硬度最高;添加La2O3的熔覆层的平均摩擦因数比镁基体和未添加La2O3的熔覆层的平均摩擦因数小,说明稀土氧化物能够减小熔覆层的摩擦因数,提高涂层的耐磨性。  相似文献   

4.
为增强轧辊表面硬度以提升轧辊工作寿命,采用1 kW光纤激光器在Cr12MoV表面制备M2高速钢熔覆层,探索最优激光工艺参数。通过着色探伤剂、X射线衍射仪及显微硬度仪,对不同激光功率和扫描速度下的熔覆层显微组织、成分、物相、硬度进行检测分析。结果表明:激光功率对熔覆层表面成形质量影响较大,扫描速度对其影响不明显;随激光功率增加,熔覆层表面平整度增强,裂纹数量降低,熔覆层组织成分分布越均匀,晶界偏析现象减弱,枝晶组织逐渐粗大,熔覆层显微硬度降低;熔覆层主要由Martensite、Austensite、Fe-Cr、MC、M2C相组成,熔覆层内的组织主要是树枝晶和胞状晶,MC、M2C等硬质相弥散分布在组织内;激光功率为1 000 W,扫描速度为180 mm/min时,熔覆层表面无裂纹,最大显微硬度为1 092HV0.2,是基体的2.63倍,满足工业性能需求。  相似文献   

5.
采用激光熔覆技术在20G基体上制备五组不同Ti质量分数的Fe-Ti-V-C系合金,利用金相显微镜、扫描电子显微镜、X射线衍射仪、显微硬度计和磨料磨损试验机等仪器对各熔覆层的显微组织、硬度和耐磨性进行测试和分析。试验结果表明:五组合金熔覆层基体组织均由铁素体和马氏体构成;随着熔覆层中Ti质量分数的增加,针状马氏体基体组织转变为板条马氏体;初生(Ti,V)C的形态由树枝状和花瓣状向颗粒状转变,同时碳化物(Ti,V)C的数量逐渐增多,当Ti质量分数为14.7%时,碳化物的数量达到最高值。熔覆层截面显微硬度梯度分布合理,表层硬度达到700~950 HV0.2。湿砂磨粒磨损试验表明:适量Ti显著提高了熔覆层的耐磨性,熔覆层中随着Ti质量分数的提高,耐磨性先降低后提高,当Ti质量分数为14.7%时,大量颗粒状(Ti,V)C均匀弥散分布在铁素体及板条马氏体基体上,使得熔覆层具有最佳的耐磨性。  相似文献   

6.
研究了激光熔覆Inconel718合金涂层与基体界面的微观组织及力学性能,结果表明:由于强化相的溶解,热影响区的硬度及强度降低,典型激光熔覆工艺条件下,扫描速度越快,热影响区越窄;熔覆层底部无平面晶组织,熔合区结合致密,化学成分一致,组织过渡平滑,熔覆层内部为枝晶组织,晶间有较多的Laves相,硬度较热影响区高;时效热处理后,热影响区及熔覆层的强度接近原始基材,界面区域力学性能过渡的平滑性改善。  相似文献   

7.
为了进一步提高自熔性镍基碳化钨涂层综合性能,利用IPG光纤激光器YLR-3000激光加工系统进行重熔实验,激光重熔工艺参数为:离焦量3mm、扫描速度2mm/s、送粉电压8V和激光功率1200W,使用洛氏硬度计、蔡司高级金相显微镜和显微硬度计分析激光重熔后熔覆层硬度及组织的影响。结果表明:通过激光重熔后,熔覆层组织致密均匀,熔覆层中上部分组织晶粒细小,晶粒得到了细化,沿熔覆层与基体交界处晶粒向外延生且呈现柱状晶及等轴晶,组织性能良好,基体与熔覆层间冶金结合比较牢固;熔覆层硬度得到提高,显微硬度分布均匀并且与基体相比提高约3倍。激光重熔可以改善镍基碳化钨涂层的微观形貌,提高其机械性能。优化工艺参数:激光功率1300W、重熔功率1200W、扫描速度2mm/s、送粉电压8V。  相似文献   

8.
为了提高40CrNiMo钢基体的力学性能,采用1000 W光纤激光器在40CrNiMo钢基体表面上制备铁基熔覆层。分别采用扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射(XRD)、万能试验机、显微硬度计等分析测试手段对涂层进行分析。结果表明:制备的涂层表面平整,基体与熔覆层之间存在明显的过渡区域,结合界面无气孔、裂纹等缺陷,与基体形成了较好的冶金结合。熔覆层显微组织由马氏体和少量的M23C6碳化物组成,基体与熔覆层之间的过渡区域主要以细小的等轴晶为主,熔覆层中部则以柱状晶和少量的树枝晶为主。熔覆层性能优异,相对于基体的抗拉强度、屈服强度和伸长率分别提高了21.4%、22.9%和16.7%,显微硬度为415~450 HV0.2,均优于40CrNiMo钢。  相似文献   

9.
激光熔覆30CrMnSi   总被引:1,自引:1,他引:0  
为提高30CrMnSi钢的显微硬度,采用激光熔覆技术对其进行表面处理,分析了熔覆层的微观组织,测试了熔覆层的显微硬度。研究结果表明,在激光功率为450W,扫描速度为6mm/s时,可以获得比基体组织晶粒更致密细小的熔覆层,熔覆层最高硬度达1030HV,约是基体硬度的4~5倍。  相似文献   

10.
在45#钢表面激光熔覆梯度涂层,其中底层材料分别为Ni60A和Fe基合金粉末,上层材料自熔性镍基碳化钨粉末,使用洛氏硬度计、蔡司高级金相显微镜和显微硬度计对比分析熔覆层的组织及性能。结果表明:当Ni60A粉末作为底层材料时,熔覆层宏观表面相对平整光滑,平均洛氏硬度是基体(HRC:22)的2.5倍,熔覆层厚度均匀且熔池深度基本保持不变,第一道与最后一道熔覆层的高度差仅为0.10mm,当Fe基合金粉末作为底层材料时,高度差0.28mm;熔覆层及界面处无裂纹、气孔等缺陷,沿熔覆层与基体交界处向外晶粒呈现枝状晶到等轴晶,基体与熔覆层间冶金结合比较牢固;熔覆层上层显微硬度分布均匀,约是基体的3倍。激光熔覆梯度涂层材料且上层材料为自熔性镍基碳化钨粉末时,底层材料选择Ni60A粉末,得到的涂层成形质量更佳。  相似文献   

11.
激光熔覆TiCp/Ni基合金复合涂层的显微组织与性能   总被引:5,自引:0,他引:5  
应用激光熔覆技术在45钢表面熔覆了TiCp增强Ni基合金复合涂层,通过SEM、TEM分析以及磨损试验,研究了复合涂层的组织及摩擦学特性。研究结果表明,TiC颗粒在熔覆层中发生部分溶解和重新析出;在凝固应力作用下,TiC颗粒与粘结金属界面之间存在孪晶和位错。熔覆层与基体形成交互扩散区,在该区中发现(Fe,Cr)23C6碳化物,同时还存在大量的α和γ微晶。涂层局部区域存在Ni-Si-B-RE非晶物相。稀土氧化物不能显著地提高复合涂层显微硬度,但能明显地减小复合涂层的摩擦因数,显著提高涂层的耐磨性。TiC质量分数为50%时,熔覆层具有最佳耐磨性。  相似文献   

12.
为增强材料表面硬度和耐磨性,以Ti O2-Al-B4C-C作为粉末体系,利用激光熔覆技术在45#钢基材表面上制备了Ti C-Ti B2增强复合涂层,采用金相显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计和摩擦磨损试验机研究了不同含量的Ti O2-Al-B4C-C系合金粉末对涂层组织性能的影响。结果表明:复合涂层与基材冶金结合,无裂纹和气孔等缺陷,Ti C、Ti B2弥散分布于涂层中;随着Ti O2-Al-B4C-C系合金粉末含量的增加,涂层组织中Ti C、Ti B2及等轴晶的量逐渐增多;熔覆层的硬度也逐渐增加,当合金粉末含量为70Wt%时,熔覆层硬度最高,为基材的4倍。Ti O2-Al-B4C-C系合金粉末含量为50Wt%时,熔覆层磨损量最小,耐磨性最好  相似文献   

13.
在不同工艺条件下,EN8轴件表面采用横流CO2激光器熔覆BNi74CrSiB/微-纳米WC金属陶瓷涂层。通过对熔覆层组织、显微硬度和摩擦磨损性能分析测试表明,在激光功率为2kW,扫描速度为15mm/s、光斑直径为3mm时,可获得较微米粒度WC熔覆层更细小致密的晶粒熔覆层,熔覆层平均显微硬度可达980HV,约为基体硬度的4倍,微-纳米WC的加入能够改善摩擦磨损性能。熔覆后EN8钢轴件的显微硬度和耐磨损性得到极大的提高。  相似文献   

14.
Q235D激光熔覆实验研究   总被引:1,自引:0,他引:1  
在Q235D钢表面激光熔覆Fe基合金粉末,通过对熔覆层外观形貌、表面硬度、金相组织和显微硬度的对比分析得出了双层熔覆时的最优工艺参数,当两层工艺参数相同且均为:激光功率600W、扫描速度2mm/s、搭接率24.2%、送粉电压10V时,所得熔覆层的表面较为平整均匀,通过金相组织分析发现,基体与熔覆层的冶金结合性较好,无裂纹,并且基本无气孔出现,熔覆层的显微硬度显著高于基体且从熔覆层→过渡区→基体呈梯度降低。在两熔覆层交界处,显微硬度从界面处往第一熔覆层方向先减小后增加直到最高值,从界面处往第二熔覆层方向显微硬度呈阶梯状上升逐渐增加到熔覆层硬度的最高值,尽管两熔覆层交界处显微硬度有所降低,但是仍然大大高于基体的显微硬度,对熔覆层性能基本无影响,在工业生产中有着较好的发展前景。  相似文献   

15.
为探究H13钢表面激光熔覆铁基合金粉末试验中工艺参数对熔覆层表面硬度和几何尺寸的影响规律并得出最佳工艺参数,试验对不同数值的激光功率、扫描速度和送粉电压所得单道熔覆层进行了表面硬度测量、显微组织观察和显微硬度测量等分析。结果表明,当扫描速度和送粉电压一定时,激光功率增加会使得熔池深度和熔覆层厚度增加,表面硬度则会先增加后降低;当扫描速度和激光功率一定时,送粉电压增加会使得熔池深度和熔覆层高度变化,表面硬度则先增加后降低。通过对峰值对应的熔覆层进行金相组织观察发现,熔覆层晶粒细小且排列紧密,并与基体形成了良好的冶金结合。熔覆层截面显微硬度分布表明,其熔覆层的平均显微硬度明显高于基体。  相似文献   

16.
钛合金表面激光熔覆TiC复合涂层显微组织的研究   总被引:2,自引:0,他引:2  
采用HL-5000型横流CO2激光加工机,在TC4钛合金表面制备了表面较平整、较细密、基本消除了裂纹与孔隙并与基体呈冶金结合的TiC复合涂层。通过SEM、EDAX、XRD、HXD分析了熔覆层的显微组织、成分、物相.测试了激光熔覆层的显微硬度。结果表明,激光熔覆制备的TiC复合涂层与基体呈冶金结合,涂层中有大量小块状、针状TiC颗粒和TiC树枝晶。激光熔覆层由TiC、γ—Ni、TiB2、CrB、Ni3B等相组成。熔覆层的显微硬度平均值约为950HV0.1。  相似文献   

17.
为了提高AZ91D镁合金表面性能,实验利用5 kW横流CO2激光器在AZ91D镁合金表面熔覆了Al+微量Al2O3涂层(Al2O3的质量分数分别为2%,3%,4%,Al和Al2O3的粒度均为300目),使用激光的功率分别为1.9kW,1.5 kW,1.7 kW,扫描速率为7 mm/s,对不同激光工艺参数下获得的熔覆层组织进行了观察,用扫描电镜(SEM)对熔覆层进行了微观分析,并测试了熔覆层的显微硬度和耐磨性能。实验结果表明:当激光功率为1.7 kW~1.9 kW,扫描速率为7 mm/s时,熔覆层的显微硬度最高达320HV0.2是基体的80HV0.2的4倍,耐磨性比基体明显提高了。  相似文献   

18.
为提高45号钢表面硬度和耐磨性,可以在45号钢的表面采用激光熔覆技术熔覆合金涂层提高其表面性能。镍基合金熔覆层硬度高、耐磨、抗腐蚀、抗弯曲、可以在极端环境下具有稳定的性能,但在激光熔覆层中易产生裂纹。为改善45钢表面性能,在相同的扫描速率下采用不同功率在其表面激光熔覆制备了Ni基(Ni60)复合涂层,对不同激光功率熔覆层的性能检测使用金相显微镜、显微硬度仪、扫描电镜。结果表明:随着激光功率的增加,表面粗糙度变大,熔覆层的宽度、高度、基材的熔化深度都有一定程度的增大,裂纹出现趋势减小。在45号钢上熔覆Ni60合金粉末可以提高基材表面显微硬度,熔覆层显微硬度高出基材显微硬度约700HV,激光熔覆技术在一定范围内可以实现对基材的表面硬化。  相似文献   

19.
通过使用6 k W光纤激光器在42Cr Mo钢表面激光熔覆Ni Cr BSi合金涂层,研究了激光扫描速度对Ni Cr BSi熔覆层的宏观成形、显微组织和硬度的影响。采用金相显微镜、扫描电镜、显微硬度计等,对熔覆层的宏观尺寸、显微组织和硬度等进行了测试分析。结果表明,随着激光扫描速度的增加,熔覆层的熔宽、熔高、熔深和热影响区宽度都降低,熔覆层的稀释率稍有增加;熔覆层与基体为良好的冶金结合,熔覆层的组织随着扫描速度的增加得到细化,熔覆层的硬度先增加然后降低。  相似文献   

20.
高硬度多微孔小型零件的结构特点为其表面熔覆强化带来了较大难题。采用辅助工艺装置及同轴送粉激光熔覆方法对以阀座为代表的高硬度多微孔小型零件进行激光表面熔覆钴基合金涂层强化处理。采用扫描电镜、X射线衍射仪、显微硬度计及激光显微镜等分析、测试仪器对激光熔覆层宏观形貌、微观组织及显微硬度进行表征,采用燃油喷射试验台对激光熔覆及未熔覆处理阀座使用寿命进行对比考核测试。结果表明,采用纯铜辅助工艺装置,在保证熔覆层良好成形的同时,避免了高硬度小型零件在激光熔覆过程中烧蚀、高温回火等现象的产生,有效解决了小型零件激光熔覆难题。采用镶嵌碳棒的方法有效地解决了熔覆层堵塞微孔的难题。激光熔覆后的钴基合金涂层主要由γ-Co、CoCx、Cr23C6、W5Si3等相组成,微观组织表现为由枝晶及共晶组成的亚共晶组织。熔覆层与基体之间形成了良好的冶金结合。激光熔覆处理后的阀座表面耐油流冲蚀性能明显增强,使用寿命提高40%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号