首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
In the present work, we have discussed the structural and photoluminescent properties of Al2O3 nanoparticles doped with Cr3+ ion prepared through solution combustion synthesis (SCS) technique. SCS is a well-known method for the production of different metal oxides and composite materials such as metal matrix composites and for producing this need an extra reduction step. The set of samples differing in activator concentration were studied carefully by means of structural and optical characterization methods. In particular, the transmission electron microscopy (TEM) has been deployed together with X-ray diffraction (XRD) technique to determine fundamental structural properties of nanoparticles. XRD results showed that pure α-Al2O3 single phase was obtained and TEM result indicates that nanoparticles are spherical in shape. The selected area electron diffraction (SAED) and Energy dispersive analysis by X-rays (EDAX) analysis suggested the crystallinity and chemical composition of the Cr3+ doped Al2O3. The change in crystal structure parameters was obtained by Rietveld refinement method. The optical characterization focused mainly on the basic excitation and emission features and their sensitivity to the dopant concentrations. The excitation spectrum of Cr3+-doped Al2O3 nanopowders consist of two bands peaking at 406 nm and 570 nm and the emission spectrum consist of two bands peaking at 694 nm and 670 nm.  相似文献   

2.
Uniform Al2O3:Cr3+ microfibers were synthesized by using a hydrothermal route and thermal decomposition of a precursor of Cr3+ doped ammonium aluminum hydroxide carbonate (denoted as AAHC), and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) spectra and decay curves. XRD indicated that Cr3+ doped samples calcined at 1473 K were the most of α-Al2O3 phase. SEM showed that the length and diameter of these Cr3+ doped alumina microfibers were about 3–9 μm and 300 nm, respectively. PL spectra showed that the Al2O3:Cr3+ microfibers presented a broad R band at 696 nm. It is shown that the 0.07 mol% of doping concentration of Cr3+ ions in α-Al2O3:Cr3+ was optimum. According to Dexter's theory, the critical distance between Cr3+ ions for energy transfer was determined to be 38 Å. It is found that the curve followed the single-exponential decay.  相似文献   

3.
《Optical Materials》2014,36(12):2053-2055
The comparative study of the luminescent properties of Al2O3:Ti crystal in comparison with those for undoped Al2O3 crystal counterpart is performed under synchrotron radiation excitation with an energy of 3.7–25 eV. Apart from the main emission band peaked at 725 nm related to the 2E  2T2 radiative transitions of Ti3+ ions, the luminescence of excitons localized around Ti ions in the band peaked at 290 nm and the luminescence of F+–Ti and F–Ti centers in the bands peaked at 325 and 434 nm are also found in the emission spectra of Al2O3:Ti crystal. We show also that the luminescence of Ti3+ ions in Al2O3:Ti crystal can be effectively excited by the luminescence of excitons localized around Ti dopant as well as by the luminescence of F–Ti centers.  相似文献   

4.
Double-emitting blue phosphor Sr3(PO4)2: Eu2+, Dy3+ was synthesized by solid state reaction under H2 atmosphere. XRD exhibited the pure hexagonal phase of the prepared phosphor. The photoluminescence results showed that all samples had intense broad absorption band between 250 and 450 nm, which matched well with the near-UV (350–420 nm) emission band of InGaN-based chips. The emission spectrum of Sr3(PO4)2: Eu2+, Dy3+ consisted of two broad bands, peaked at 485 nm and 410 nm, which originated from two luminescent centers, related to 4f65d1  4f7 transition of Eu2+ in six-coordinated Sr(I) and ten-coordinated Sr(II) sites respectively. The intensity ratio of two emission bands could be easily tuned by adjusting Dy3+ co-doping content, which resulted in color-tunable luminescence in bluish green region to purplish blue region.  相似文献   

5.
Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV–VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV–VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1  1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E  4A2) and another intense band from 700 to 850 nm (4T2  4A2).  相似文献   

6.
Ca2MgSi2O7:Eu3+ films were deposited on Al2O3 (0 0 0 1) substrates by pulsed laser deposition. The films were grown at various oxygen pressures ranging from 100 to 400 mTorr. The crystallinity and surface morphology of the films were examined by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. XRD and AFM respectively showed that the Ca2MgSi2O7:Eu3+ films had a zircon structure and consisted of homogeneous grains ranging from 100 to 400 nm depending on the deposition conditions. The radiation emitted was dominated by a red emission peak at 620 nm. The maximum PL intensity of the Ca2MgSi2O7:Eu3+ films grown at 300 mTorr was increased by a factor of 1.3 compared to that of Ca2MgSi2O7:Eu3+ films grown at 100 mTorr. The crystallinity, surface roughness and photoluminescence of the thin-film phosphors were strongly dependent on the deposition conditions, in particular, the oxygen partial pressure.  相似文献   

7.
《Optical Materials》2013,35(12):2112-2119
Electron paramagnetic resonance (EPR), optical absorption and photoluminescence spectra as well as luminescence kinetics of the Li2B4O7:Cr and KLiB4O7:Cr tetraborate glasses were investigated at T = 300 K. The Li2B4O7:Cr and KLiB4O7:Cr glasses containing 0.4 and 1.6 mol.% Cr2O3 of high optical quality were obtained from polycrystalline compounds by fast cooling of the melts. The X-band EPR spectroscopy shows that the Cr impurity is incorporated in the tetraborate glass network as isolated Cr3+ centers and Cr3+–Cr3+ pairs coupled by magnetic dipolar and exchange interactions. The EPR spectral parameters (geff and ΔBpp) of both Cr3+ and Cr3+–Cr3+ centers in the Li2B4O7:Cr and KLiB4O7:Cr glasses were measured and analyzed. All transitions in optical absorption, luminescence excitation and emission spectra of these glasses are identified. Broad complex bands that peak near 615, 405, and 350 nm in optical absorption and luminescence excitation spectra correspond to the 4A2g(F)  4T2g(F), 4A2g(F)  4T1g(F), and 4A2g(F)  4T1g(P) spin-allowed transitions of the Cr3+ centers in distorted octahedral sites of the tetraborate glass network. The octahedral (cubic) crystal field strength (10Dq) and Racach parameters (B and C) for Cr3+ centers in Li2B4O7:Cr and KLiB4O7:Cr glasses are estimated. Narrow and broad emission bands in red – NIR regions are assigned to the 2Eg(F)  4A2g(F) (R1 line) and 4T2g(F)  4A2g(F) (electron-vibration) transitions, which correspond to the Cr3+ centers in high-field and low-field sites, respectively. All observed emission bands are characterized by non-exponential decay. Measured average lifetimes and local structure of the Cr3+ centers in high-field and low-field sites of the Li2B4O7:Cr and KLiB4O7:Cr glass network have been discussed.  相似文献   

8.
Transparent glass ceramics, synthesized from melt quenching followed by heat treatment, of the composition 10Na2O–30PbO–10Bi2O3–(50  x)SiO2:xCr2O3 (mol%), where 0  x  0.5, were characterized with XRD, DTA, SEM and EDS. Physical and spectroscopic studies, viz., optical absorption, electron paramagnetic resonance (EPR), FTIR and Raman were investigated. The characterization of the host glass ceramic has revealed that the formation of a major phase of sodium silicate along with two minor phases such as lead silicate and bismuth oxide. By integrating Cr2O3 to the host glass additional crystal phases viz., NaCrO2, Na2Cr2O7 and Pb(CrO4) which are the complexes of Cr3+ and Cr6+ ions were also developed. As the concentration of nucleating agent is increased, a part of the Cr6+ ions is found to reduce in to Cr3+ ions. Spectroscopic studies have revealed that with an increase in the concentration of Cr2O3 from 0.1 to 0.5 mol%, there is a gradual increase in the intensity of vibrational modes of various asymmetric structural units of silicate, bismuthate and chromate in the glass ceramic network at the expense of symmetrical structural units. The analysis of the results of these studies has indicated that in the samples containing higher concentration of Cr2O3, chromium ions exists predominantly in Cr3+ state and occupy the octahedral positions in glass ceramic matrix and such glass ceramic samples are suitable for lasing action.  相似文献   

9.
The photoluminescence (PL) and vacuum ultraviolet (VUV) excitation properties are studied for the BaZr(BO3)2:Eu3+ phosphor with incorporating the Al3+, La3+, or Y3+ ion into the lattice. The excitation spectrum shows an absorption band in the VUV region with the band-edge at 200 nm and a very weak charge transfer band of Eu3+ at about 226 nm. The luminescence spectrum shows a strong emission at 615 nm (5D0  7F2 transition) and weak emission at 594 nm (5D0  7F1 transition) in BaZr(BO3)2:Eu3+, with a good red color purity. The PL intensity is increased by incorporating Al3+ into the BaZr(BO3)2 lattice. The PL intensity has also increased by incorporating La3+ into the lattice, however, the red color purity has deteriorated because of the increased centrosymmetric nature of the site. With the incorporation of Y3+ into the BaZr(BO3)2 lattice, the PL characteristics of the Eu3+ activator resembles that in the YBO3 lattices. The intensity of the red PL for the Eu3+ activator is the highest with good color purity for BaZr(BO3)2:Eu3+ incorporated with both Al3+ (10%) and La3+ (0.5%).  相似文献   

10.
We report an effective method to synthesize Y2O2S:Eu3+, Mg2+, Ti4+ nanoparticles. Tube-like Y(OH)3 were firstly synthesized by hydrothermal method to serve as the precursor. Nanocrystalline long-lasting phosphor Y2O2S:Eu3+, Mg2+, Ti4+ was obtained by calcinating the precursor with co-activators and S powder. XRD investigation shows a pure phase of Y2O2S, indicating no other impurity phase appeared. SEM and TEM observation reveals that the precursor synthesized via a hydrothermal routine has tube-like structure and the final phosphor reveals a hexagonal shape. The fine nanoparticles which have the particle size ranging from 30 to 50 nm show uniform size and well-dispersed distribution. From the spectrum, the main emission peaks are ascribed to Eu3+ ions transition from 5DJ (J = 0, 1, 2) to 7FJ (J = 0, 1, 2, 3, 4). After irradiation by 325 nm for 10 min, the Y2O2S:Eu3+, Mg2+, Ti4+ long-lasting phosphor shows very bright red afterglow and the longest could last for more than 1 h even after the irradiation source had been removed. It is considered that the long-lasting phosphorescence is due to the contribution from the electron traps with suitable trap depth.  相似文献   

11.
Red-emitting phosphors LaBSiO5:Eu3+ and LaBSiO5:Eu3+, Al3+ were synthesized by the conventional solid state method at 1100 °C. The structure and luminescent properties of these phosphors are investigated. LaBSiO5:Eu3+ and LaBSiO5:Eu3+, Al3+ could be efficiently excited by near ultraviolet light with the strongest excitation peak at 395 nm. The main emission peak is located at around 616 nm, which corresponds to the transition of 5D0  7F2 of Eu3+ ions. The emission intensity of LaBSiO5:Eu3+ was enhanced by introducing Al3+ ions. Compared with Y2O2S:0.05Eu3+, the sample La0.70B0.75SiO5:0.30Eu3+, 0.25Al3+ shares the intense red emission, and its emission intensity is about 3.8 times as strong as that of Y2O2S:0.05Eu3+ under 395 nm light excitation. Bright red light can be observed from the red LED based on La0.70B0.75SiO5:0.30Eu3+, 0.25Al3+, hence La0.70B0.75SiO5:0.30Eu3+, 0.25Al3+ maybe find application on near-UV InGaN-based white LEDs.  相似文献   

12.
Pr3+-doped Gd2O3 phosphor powders were prepared by co-precipitation method. Their structures during heat-treatments were studied by XRD and IR methods. The pH was optimized to be 8 in the co-precipitation process and the hydroxide precursors were transformed into pure phase cubic Gd2O3 at 500 °C for 1 h. Optical properties of Pr:Gd2O3 phosphor powders were reported. The main emission bands are assigned to 1D2  3H4, 3P0  3H6, 3P0  3F2 transition of Pr3+ under excitation at 255 and 488 nm. The emission intensities increase with increasing sintering temperature. Concentration quenching appears as the Pr3+ doping-concentration up to 1 at.%.  相似文献   

13.
《Optical Materials》2014,36(12):2261-2266
A series of novel plate-like microstructure Na3SrB5O10 doped with various Dy3+ ions concentration have been synthesized for the first time by solid-state reaction (SSR) method. X-ray diffraction (XRD) results demonstrated that the prepared Na3SrB5O10:Dy3+ phosphors are single-phase pentaborates with triclinic structure. The plate-like morphology of the phosphor is examined by Field emission scanning electron microscopy (FE-SEM). The existence of both BO3 and BO4 groups in Na3SrB5O10:Dy3+ phosphors are identified by Fourier transform infrared (FT-IR) spectroscopy. Upon excitation at 385 nm, the PL spectra mainly comprising of two broad bands: one is a blue light emission (∼486 nm) and another is a yellow light emission (∼581 nm), originating from the transitions of 4F9/2  6H15/2 and 4F9/2  6H13/2 in 4f9 configuration of Dy3+ ions, respectively and the optimized dopant concentration is determined to be 3 at.%. Interestingly, the yellow-to-blue (Y/B) emission integrated intensity ratio is close to unity (0.99) for 3 at.% Dy3+ ions, suggesting that the phosphors are favor for white illumination. Moreover, the calculated Commission International de l’Eclairage (CIE) chromaticity coordinates of Na3SrB5O10:Dy3+ phosphors shows the values lie in white light region and the estimated CCT values are located in cool/day white light region.  相似文献   

14.
《Optical Materials》2009,31(12):1848-1853
The VUV excited luminescent properties of Ce3+, Tb3+, Eu3+ and Tm3+ in the matrices of KMGd(PO4)2 (M = Ca, Sr) were investigated. The bands at about 165 nm and 155 nm in the VUV excitation spectra are attributed to host lattice absorptions of the two matrices. For Ce3+-doped samples, the Ce3+ 5d levels can be identified. As for Tb3+-doped samples, typical 4f–5d absorption bands in the region of 175–250 nm were observed. For Eu3+ and Tm3+-doped samples, the O2−–Eu3+ and O2–Tm3+ CTBs are observed to be at about 229 nm and 177 nm, respectively. From the standpoints of color purity and luminescent efficiency, KCaGd(PO4)2:Tb3+ is an attractive candidate of green light PDP phosphor.  相似文献   

15.
K4BaSi3O9:Eu3+ polycrystals were synthesized by solid state method. X-ray powder diffraction measurements confirmed structure of the samples. The excitation and the emission spectra of orthorhombic K4BaSi3O9 doped with Eu3+ were investigated. The excitation spectrum exhibits a broad band with maximum at 220 nm corresponding to the charge transfer (CT) transition between O2 and Eu3+ ions and smaller 4f–4f transitions. The emission of investigated phosphor was excited at 395 nm and has quantum efficiency (QE) equal 27%. The emission maximum at 616.5 nm was assigned to the 5D0  7F2 transition of Eu3+ ions. The luminescence decay profiles as well as the thermal quenching were measured and analyzed. K4BaSi3O9:Eu3+has high temperature quenching of the emission T0.5 = 335 °C.  相似文献   

16.
The Er3+-doped Al2O3 powders have been prepared by the non-aqueous sol–gel method using the aluminum isopropoxide as precursor, acetylacetone as chelating agent, nitric acid as catalyzer, and hydrated erbium nitrate, as dopant under isopropanol environment. The phase structure and phase transition of the Er3+-doped Al2O3 powders were investigated by using thermogravimetry/differential thermal analysis (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The phase contents diagram for the Er-doped Al–O system with the doping concentration up to 5 mol% was described at the sintering temperature from 550 to 1250 °C. There were the three crystalline types of Er3+-doped Al2O3 phases, γ-, θ- and α-(Al, Er)2O3, and the two relative stoichiometric compounds composed of Al, Er, and O, ErAlO3 and Al10Er6O24 phases in the Er–Al–O phase contents diagram. The Er3+ doping suppressed crystallization of the γ and θ phases and delayed phase transition of the γ  θ and θ  α. The increased Er3+ doping concentration and the elevated sintering temperature enhanced the precipitation of the ErAlO3 and Al10Er6O24 phases. The preparation procedure for the Er3+-doped Al2O3 powders in the non-aqueous sol–gel process, including chelating, hydrolysis, peptization, doping and gelation, has a significant effect on the phase formation and its transition for the Er3+-doped Al2O3 powders.  相似文献   

17.
《Materials Research Bulletin》2006,41(11):2147-2153
Single phase of Eu3+-doped YVO4 nanophosphors at different pH values were synthesized by a mild hydrothermal method. Their photoluminescence were evaluated under UV and VUV region, respectively. Monitoring by 619 nm emission, broad bands at around 143 nm, 200 nm, 260 nm were observed in the excitation spectrum of YVO4:5 mol%Eu3+. These peaks could be assigned to host absorption, the overlap of the VO43− host absorption and charge transfer transition between Eu3+ and O2−, respectively. Both 254 nm and 147 nm excitations, the emission spectra were identical, they were all composed of Eu3+ emission transitions arising mainly from the 5D0 level to the 7FJ (J = 1, 2, 3, 4) manifolds. With the pH values ranging from 7 to 11, the relative intensity of the emission spectra were decreasing, and the position of the predominant peak (5D0  7F2) was changed from 619 nm to 615 nm when the pH values changed from 7 to 11.  相似文献   

18.
《Materials Research Bulletin》2006,41(10):1854-1860
The luminescent properties of Sr3Al2O6 doped and co-doped with the rare earths (Ln3+ = Eu3+, Dy3+, Eu3+ and Dy3+) have been studied. The material was synthesized by reflux method and fired up to 900 °C for 16 h. The X-ray diffraction pattern confirms that the synthesized material consists of Sr3Al2O6 as main phase. The photoluminescence study gives a clear evidence of europium stabilizing in trivalent form and surprisingly with no presence of europium in the divalent state. The addition of Dy3+ as co-dopant in the Sr3Al2O6:Eu3+ matrix shows the quenching effect in the photoluminescence (PL) spectra. The photoluminescence intensity of Eu3+ falls gradually on increasing the concentration of the co-dopant in the range from 0.1 mole% to 2.0 mole%. The significantly intense thermoluminescence (TL) glow peak was obtained for Sr3Al2O6:Eu3+, Dy3+ (1% and 0.1%) at around 194 °C when irradiated with 10 kGy dose from Sr-90 β source.  相似文献   

19.
LaPO4:Re (Re = Ce3+, Eu3+ and Tb3+) nanorods have been successfully synthesized on a large scale by a facile and rapid microwave heating method. The structure, morphology and physical properties of the as-prepared products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). XRD patterns showed that the as-prepared products had hexagonal structure and high crystallinity and purity. TEM images showed that these LaPO4:Re nanorods have a high yield and an obvious one-dimensional structure with diameter from 6 nm to 30 nm and length up to 400 nm. The luminescence spectra of the products indicated that different rare-earth ions had been successfully doped in LaPO4 matrix via the microwave heating method and the actual doping amounts of Re ions were determined by the inductively coupled plasma (ICP).  相似文献   

20.
Titanium doped sapphire (Ti:Al2O3) crystal fibers have been grown by the micro-pulling-down (μ-PD) method using different pulling rate in the range (0.1–0.5 mm/min). The present work has investigated the crystal growth, including diameter, bubbles defects and segregation properties. The fiber’s absorption and IR emission experiments are analyzed. The lifetime of Ti3+ in the IR range obtained at room temperature is 3.1 μs. Moreover, the two blue emissions at 420 nm and 470 nm bands have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号