首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对不同慢压射速度条件下真空辅助对AZ91D镁合金压铸件组织及力学性能的影响进行了评估。在联合有自行改进的TOYO真空系统的TOYO BD-350V5型冷室压铸机上制备片状AZ91D镁合金压铸件。研究发现,充型时型腔真空压力随着慢压射速度的升高呈现3次方增长,导致真空辅助对压铸件中气孔的降低能力随着慢压射速度的降低而下降。常规和真空压铸件中压室预结晶组织(ESC)含量随着慢压射速度的变化趋势相似。在较低慢压射速度时,真空压铸件拉伸性能受ESC含量的影响很大,随着慢压射速度的升高,真空压铸件中气孔含量的影响将变得显著。  相似文献   

2.
Dong  Tian-shun  Zheng  Xiao-dong  Li  Xiao-bing  Li  Guo-lu  Wang  Tuo  Cui  Chun-xiang 《中国铸造》2017,14(6):513-518
To improve the mechanical properties of AZ91D magnesium alloy,the submicrocrystal Al-Ti-B master alloy was prepared with copper mold inject casting method,and the influence of submicrocrystal Al-Ti-B master alloy on the microstructure and mechanical properties of AZ91D was investigated.Results show that,the distribution of Ti B_2 phase in submicrocrystal Al-Ti-B alloy is even and disperse,and the average size of Ti Al_3 phase is reduced from 10-30μm to~1μm.The properties of AZ91D refined with submicrocrystal Al-Ti-B master alloy are better than that with coarse-grained Al-Ti-B master alloy without copper mold inject casting.The tensile strength,elongation and Brinell hardness of AZ91D are increased by 10.6%,25%and 18.1%,respectively.Therefore,refinement of AZ91D with submicrocrystal Al-Ti-B that is obtained by copper mold inject casting is an effective method to improve its mechanical properties.  相似文献   

3.
In this paper, the effects of pouring temperature of magnesium melt, preheating temperature of the barrel of the screw mixer, and shear rate on the solidified microstructures of semi-solid slurry were investigated by a mechanical stirring semi-solid process. The appropriate processing parameters of slurry preparation were obtained, and the mold filling ability of semi-solid slurry for thin-walled casting was examined. Results indicate that the solid volume fraction of non-dendritic microstructure increases with a decrease in pouring temperature of magnesium melt and the barrel preheating temperature of the screw mixer. Also the grain size of primary α-phase is reduced. Furthermore, the solid volume fraction of semi-solid nondendritic structure decreases with an increase of shear rate. The fine and round granular microstructure with 30~50 μm in size of semi-solid AZ91D magnesium alloy was presented. Finally, a 1.0 mm thin-walled casting with a clear contour and good soundness was successfully made by semi-solid rheo-diecasting.  相似文献   

4.
To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The effects of amplitude and pouring temperature on microstructure and mechanical properties of AZ91 D magnesium alloy were studied.The results indicated that the mechanical vibration remarkably improved the sizes,morphologies and distributions of the primaryα-Mg phase andβ-Mg17 Al12 phase,and the densification and tensile properties of the AZ91 D alloy.With an increase in amplitude,the microstructures were gradually refined,resulting in a continuous increase in mechanical properties of the AZ91 D alloy.While,with the increase of pouring temperature,the microstructures were continuously coarsened,leading to an obvious decrease of the mechanical properties.The tensile strength and yield strength of the AZ91 D alloy with a vibration amplitude of 1.0 mm and a pouring temperature of 730℃were 60%and 38%higher than those of the alloy without vibration,respectively.  相似文献   

5.
You  Zhi-yong  Jiang  Ao-xue  Duan  Zhuang-zheng  Qiao  Gang-ping  Gao  Jing-lei  Guo  Ling-bing 《中国铸造》2020,17(3):219-226
Semi-solid AZ91D magnesium alloy billets were prepared by near-liquidus heat holding. Semi-solid squeeze casting was conducted at 575, 585 and 595 ℃, respectively, with 1 mm·s~(-1) squeeze speed. The semisolid squeeze casting AZ91D samples were heat treated by T4(solution at 415 ℃ for 24 h) and T6(solution at 415 ℃ for 24 h + 220 ℃ for 8 h) processes, respectively. The microstructure and mechanical properties of the alloy in different states were investigated by means of OM, SEM and tensile testing machine. The results show that compared to as-cast alloy, the grain size of the semi-solid squeezed AZ91D decreased significantly, and with the increase of semi-solid squeeze temperature, the grain size of AZ91D increased. The grains of the alloy were refined by T4 treatment, and further refined by T6 treatment. T6 treatment greatly improved the tensile strength, elongation, and hardness, but did not significantly improve yield strength. After 575 ℃ squeeze casting and T6 treatment, the ultimate tensile strength(UTS) reached 285 MPa, the elongation reached 13.36%, and the hardness also reached the maximum(106.8 HV), but the yield strength(YS) was only 180 MPa. During the process of semi-solid squeeze casting and heat treatment, the matrix grain was refined and a large number of precipitated and secondary precipitated phases of Mg_(17)Al_(12) appeared. Both the average size of matrix grain and secondary precipitated phase decreased, while the volume fraction of secondary precipitated phase increased. All these resulted in high tensile strength, elongation and hardness.  相似文献   

6.
以AZ91-1.5Si-0.4Ca为对象(以AZ91为参照),通过设计并压铸成型4种厚度的板状试样获得了4个凝固速率。首先对各壁厚试样的凝固速率进行了数值模拟,并对2种合金试样的显微组织、室温和180℃拉伸性能、拉伸断口形貌进行了对比研究。结果表明:AZ91-1.5Si-0.4Ca中的Si与Mg生成Mg_2Si,Ca主要以固溶的形式存在;Si和Ca有一定的晶粒细化效用。随着凝固速率增加,AZ91-1.5Si-0.4Ca中的Mg_2Si相由粗大的多边形及汉字状向细小的多边形颗粒及短棒转变。随着凝固速率增加,2种合金试样的室温和180℃力学性能提高,AZ91-1.5Si-0.4Ca室温和180℃强度受凝固速率影响大于AZ91,伸长率受凝固速率影响则小于AZ91。当壁厚小于2.5 mm时,AZ91-1.5Si-0.4Ca的180℃强度高于AZ91;当壁厚小于3 mm时,AZ91-1.5Si-0.4Ca的室温强度高于AZ91。  相似文献   

7.
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixoforming. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting.  相似文献   

8.
为了研究触变注射成形AZ91D合金中固相颗粒的形貌演变和液相的凝固行为,对该合金的组织和凝固行为进行了试验观察和理论分析。典型触变注射成形AZ91D合金由α-Mg和β-Mg17Al12两相构成,α-Mg相又可分为未熔固相和初生固相。未熔固相主要有形貌较为接近球状的固相、形貌不规则的固相、内部含有小液池的固相以及包裹液相的固相4种形貌。形貌不规则的固相被认为是球状固相和包裹液相的固相的中间发展形貌,内部含有小液池的固相可能是包裹液相的固相的初级形貌,包裹液相的固相则可能发生破裂形成不规则固相,最终发展成球状固相。球状固相被认为是最理想的也是最终的固相形貌。初生固相在液相合金中形核并长大,直至有不稳定长大行为发生为止,较为细小、圆整,主要受冷却速率的影响。Mg-Al合金二元相图的分析结果与试验观察到的组织相吻合。  相似文献   

9.
《Acta Materialia》2001,49(7):1225-1235
Thixomolding1, an emerging semisolid technology, was used to process an AZ91D magnesium alloy under experimental conditions designed to yield from 5 to 60% of the primary solid particles. The thixotropic microstructures obtained were characterized in detail and linked to the corresponding tensile properties. An increase in primary solid content was accompanied by its larger microchemical and microstructural inhomogeneity expressed by Al and Zn segregation, sub-micron precipitates of Mg17Al12 and eutectic islands. At the same time, the size of α-Mg grains within the eutectic mixture was reduced. For the volume fraction of the primary solid up to about 20%, the tensile strength and elongation remained at the level of 240 MPa and 4.5%, respectively. A further increase of the primary solid caused a reduction in both strength and ductility. The fractographic analysis revealed a correlation between the primary solid content and the morphology of the decohesion surface. It is concluded that for alloys with a solid fraction below approximately 20%, the internal structure of the primary solid and the eutectic mixture control the properties. For a large volume of unmelted fraction, the interface between the primary solid and the eutectic mixture is a key factor which controls the tensile properties of the thixomolded alloy.  相似文献   

10.
The effect of Nd addition on the microstructure and mechanical properties of a die-cast AZ91 alloy was investigated in the present work. The results show that the die-cast AZ91 alloy is composed of α-Mg matrix and γ-Mg17Al12 phase. Nd addition into the AZ91 alloy leads to the formation of rare earth containing intermetallic phase. Al4Nd phase forms when Nd content is less than or equal to 1.0 wt.%. Al2Nd phase appears simultaneously when Nd content reaches to 3.0 wt.%. The size and volume fraction of γ-Mg17Al12 phase decrease, because of the newly formed Al-Nd phase. And the γ-Mg17Al12 phase distributes from reticular to dispersive. Nd addition has a little effect on the room temperature properties of the die-cast AZ91 alloy, but greatly improves the elevated temperature properties. The tensile strength of AZ91-0.5Nd and AZ91-1.0Nd alloy tested at 150 °C is even close to the room temperature strength. The AZ91-1.0Nd alloy has the optimal properties.  相似文献   

11.
传统压铸获得AZ91D和AZ91D-1.11Nd两种合金试样,采用光学金相显微镜、扫描电子显微镜和X射线衍射仪分析了压铸态微观组织和相组成,并测试了其拉伸力学性能、硬度、导热性能和流动性能.结果 表明,在AZ91D合金中添加1.11%Nd后,压铸态晶粒有所细化,形成较多弥散分布的细小颗粒状Al2Nd和少量针状Al11N...  相似文献   

12.
Magnesium matrix nanocomposite reinforced with carbon nanotubes (CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing. The microstructures and mechanical properties of the nanocomposite were investigated. The results show that CNTs are well dispersed in the matrix and combined with the matrix very well. As compared with AZ91D magnesium alloy matrix, the tensile strength, yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%, 21% and 42% respectively in permanent mold casting. The strength and ductility of the nanocomposite are improved simultaneously. The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture. But the CNTs can prevent the local crack propagation to some extent.  相似文献   

13.
Carbon nanotube(CNT)-reinforced AZ91 D alloy composite was fabricated by ultrasonic processing.The microstructure and mechanical properties of the CNTs/AZ91 D composites were investigated.Obvious grain refinement was achieved with the addition of 0.5 wt%CNTs.The SEM observation indicated that CNTs were distributed near the grain boundary or around the inter-grain β-Mg_(17)Al_(12) phase.No evident reaction product was found at the interface between CNTs and AZ91 D matrix.Compared to the monolithic AZ91 D alloy,the yield strength,ultimate tensile strength,and elongation of the 0.5 wt%CNTs/AZ91 D composite were improved significantly.However,the poor interface bonding between CNTs and AZ91 D matrix restricted further improvement in mechanical properties.  相似文献   

14.
AZ91D and MRI153M alloys were produced by thixomolding. Their corrosion resistance is significantly higher than that of similar materials produced by ingot or die-casting. A corrosion rate smaller than 0.2 mm/year in 5 wt% NaCl solution is measured for the thixomolded AZ91D alloy. The corrosion behaviour was evaluated using immersion tests, electrochemical impedance spectroscopy, hydrogen evolution, glow discharge optical emission spectroscopy, and atomic emission spectroelectrochemistry. A bimodal microstructure is observed for both alloys, with the presence of coarse primary α-Mg grains, fine secondary α-Mg grains, β-phase, and other phases with a minor volume fraction. The amount of coarse primary α-Mg is significantly higher for the AZ91D compared with the MRI153M. The network of β-phase around the fine secondary α-Mg grains is better established in the thixomolded AZ91D alloy. A combination of several factors such as the ratio of primary to secondary α-Mg grains, localised corrosion or barrier effect due to other phases, as well as regions of preferential dissolution of the α-Mg due to chemical segregation, are thought to be responsible for the high corrosion resistance exhibited by the thixomolded AZ91D and MRI153M.  相似文献   

15.
首先,研究不同Ca含量AZ91-1Ce合金的显微组织、力学性能和阻燃性能,优化出最佳Ca含量.然后,系统研究流变挤压铸造工艺参数(包括压力和转速)对AZ91-1Ce-2Ca合金显微组织和力学性能的影响.结果表明,随着Ca含量的增加,AZ91-1Ce-xCa合金的显微组织细化,阻燃性能提高.但当Ca含量超过1%(质量分数...  相似文献   

16.
The effects of small amounts of cerium and antimony additions on the microstructure and the mechanical properties of AZ91D(Mg-9Al-Zn) based alloy were researched via the expendable pattern casting(EPC) process.The results show that the microstructure is obviously refined and the tensile strength of the AZ91D based alloy at ambient temperature is significantly improved.When compared to AZ91D,the AZ91D-1.0?-0.4%Sb alloy has higher ultimate tensile strength and elongation.Its ultimate tensile strength and elongation are enhanced by 39% and 47%,respectively.The morphology of the tensile fracture of the AZ91D-1.0?-0.4%Sb alloy has more characteristics of quasi-cleavage.This indicates that it has had a larger plastic deformation before failure.The tensile strength and elongation decrease with the increase of Ce and Sb contents because of the coarsening and volume increase of CeSb and Al11Ce3 phases.  相似文献   

17.
The samples were fabricated by 220 t thixomolded machine made by Japan Steel Works. The microstructure from the AZ91D magnesium alloy chips to the thixomolded products was investigated. Melting behavior of the chips in thixomolding process was analyzed. The evolution processing of solid phase morphology was studied, and evolution model was put forward. The results show that microstructures in outer zone of a chip and the inner zone are obviously different, and the severe distortion takes place in the brim of the chip, where the grains are observed to be bent, distorted, even broken. The severe plastic deformation region is firstly molten, then segregation area in the inner of the chip continues to melt. The liquid phase in solid phase does not formed by liquid entrapped during shearing process, but primarily induced by internal composition segregation.  相似文献   

18.
工艺因素对镁合金消失模铸造平均充型速度的影响   总被引:3,自引:0,他引:3  
消失模铸造的充型过程对于获得健全铸件至关重要,研究工艺参数对镁合金消失模铸造充型速度的影响,对于工艺参数的优化和铸件质量的提高具有非常重要的理论和实用价值。以AZ91D镁合金为研究对象,系统研究了浇注温度、模样密度、真空度、直浇道高度对镁合金消失模铸造充型速度的影响。研究结果表明:在研究的工艺因素中,以真空度对充型速度的影响最为显著,其次是模样密度和浇铸温度,直浇道高度的影响相对较小。其中随着真空度的增加,平均充型速度基本呈线性增大;随着模样密度的增加,平均充型速度减小;随着直浇道高度增加,充型速度呈增加趋势;随浇铸温度升高,平均充型速度开始增加,然后逐渐降低。  相似文献   

19.
Lap joints between AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate (PET) were produced by direct irradiation of high power diode laser beam from either plastic or metal side. Joints with strength higher than that of PET could be successfully produced. Joining mechanism involves the generation of gas bubbles in a narrow region inside PET specimen adjacent to the interface. The pressure induced by expansion of these bubbles secures tight bonding in the micro size between AZ91D and PET specimens. Discrete bubbles morphology associated with metal-side laser-irradiation promoted higher joint strength in comparison with networked wormhole morphology in the case of plastic-side laser-irradiation. The presence of pre-made pits on the AZ91D specimen surface proved to be effective to the improvement in the performance of plastic-side laser-irradiated joints.  相似文献   

20.
陈光忠  何志坚  杨岳 《表面技术》2016,45(2):134-138,187
目的研究喷丸工艺对AZ91D镁合金表面残余应力场的影响。方法基于有限元平台建立喷丸强化AZ91D镁合金的有限元模型,从残余压应力层的厚度、残余压应力的峰值及其深度等方面探讨弹丸速度、弹丸直径和弹丸入射角对AZ91D镁合金表面残余应力场的影响,并通过喷丸强化AZ91D镁合金的实验与有限元模拟结果进行对比。结果增大弹丸速度对残余压应力层的厚度、残余压应力的峰值提高效果明显,但对残余压应力峰值的深度影响不大;增加弹丸直径,残余压应力层的厚度、残余压应力的峰值及其深度均有明显提高;增大入射角,残余压应力层的厚度、残余压应力的峰值有明显提高,但是残余压应力峰值的深度基本不变。有限元模拟结果中,残余压应力层的厚度比实验值小7%,残余压应力的峰值比实验值大5%,残余压应力峰值的深度比实验值小11%。结论残余应力的实验结果与有限元模拟结果具有较好的一致性,模型合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号