首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
In this work, we report the fabrication of core-shell Fe3O4@SiO2@MS (M = Pb, Zn, and Hg) microspheres through a wet-chemical approach. The Fe3O4@SiO2@MS microspheres have both ferromagnetic and photocatalytic properties. The sulfide nanoparticles on the surfaces of microspheres can degrade organic dyes under the illumination of UV light. Furthermore, the microspheres are easily separated from the solution after the photocatalytic process due to the ferromagnetic Fe3O4 core. The photocatalysts can be recycled for further use with slightly lower photocatalytic efficiency.  相似文献   

2.
Highly biocompatible superparamagnetic Fe3O4 nanoparticles were synthesized by amide of folic acid (FA) ligands and the NH2-group onto the surface of Fe3O4 nanoparticles. The as-synthesized folate-conjugated Fe3O4 nanoparticles were characterized by X-ray diffraction diffractometer, transmission electron microscope, FT-IR spectrometer, vibrating sample magnetometer, and dynamic light scattering instrument. The in vivo labeling effect of folate-conjugated Fe3O4 nanoparticles on the hepatoma cells was investigated in tumor-bearing rat. The results demonstrate that the as-prepared nanoparticles have cubic structure of Fe3O4 with a particle size of about 8 nm and hydrated diameter of 25.7 nm at a saturation magnetization of 51 A·m2/kg. These nanoparticles possess good physiological stability, low cytotoxicity on human skin fibroblasts and negligible effect on Wistar rats at the concentration as high as 3 mg/kg body mass. The folate-conjugated Fe3O4 nanoparticles could be effectively mediated into the human hepatoma Bel 7402 cells through the binding of folate and folic acid receptor, enhancing the signal contrast of tumor tissue and surrounding normal tissue in MRI imaging. It is in favor of the tumor cells labeling, tracing, magnetic resonance imaging (MRI) target detection and magnetic hyperthermia.  相似文献   

3.
High conductivity and supermagnetism of polyaniline (PANI)-coated multi-walled carbon nanotube (MWCNT) composites containing monodispersed 6 nm iron oxide (Fe3O4) nanoparticles has been successfully synthesized by in situ chemical oxidative polymerization using anionic surfactant dodecylbenzenesulfonic acid sodium salt. Hydrophilic 6 nm spherical Fe3O4 nanoparticles fabricated by the thermal decomposition process were chemically modified using 11-aminoundecanoic acid tetramethylammonium salt. The modified nanoparticles were further mixed with carboxylic acid containing multi-walled carbon nanotubes (c-MWCNTs) in an aqueous solution to form one-dimensional Fe3O4 coated c-MWCNT template and PANI/c-MWCNT nanocomposite were then synthesized via in situ chemical oxidative polymerization in HCl solution. Structural and morphological analysis using FESEM, HRTEM and XRD showed that the fabricated Fe3O4 coated c-MWCNT/PANI nanocomposites are one-dimensional core (Fe3O4 coated c-MWCNT)–shell (PANI) structures. The electrical conductivity of 1 wt% Fe3O4 coated c-MWCNT/PANI nanocomposites at room temperature is 37.7 S/cm, which is decreased to 28.6 S/cm with the loading of 5 wt% Fe3O4 nanoparticles. The magnetic properties of Fe3O4 coated c-MWCNT/PANI nanocomposites exhibit supermagnetism with saturation magnetization in the range of 0.04–0.15 emu/g, which increases as the amount of Fe3O4 nanoparticles increases.  相似文献   

4.
This work describes the preparation and characterization of polyaniline (PANI)/hydrophilic iron oxide nanocomposites synthesized from monodispersed 13 nm iron oxide (Fe3O4) nanoparticles and aniline monomer in HCl solution by in situ chemical oxidative polymerization. Hydrophilic 13 nm spherical Fe3O4 nanoparticles fabricated using the thermal decomposition process were modified using 11-aminoundecanoic acid tetramethylammonium salt. The modified Fe3O4 nanoparticles that served as cores were dispersed in an aqueous solution with anionic surfactant dodecylbenzenesulfonic acid sodium salt to form spherical templates and the PANI/Fe3O4 nanocomposites were then synthesized via in situ chemical oxidative polymerization on the surface of spherical templates. Structural and morphological analysis using X-ray diffraction and high-resolution transmission electron microscopy showed that the fabricated PANI/Fe3O4 nanocomposites are core (Fe3O4)-shell (PANI) structures. The magnetic properties of PANI/Fe3O4 nanocomposites exhibit supermagnetism with saturation magnetization in the range of 0.23–0.91 emu/g, depending on the amount of 13 nm Fe3O4 nanoparticles.  相似文献   

5.
钨酸铋(Bi2WO6),结构最简单的Aurivillius相化合物,是近期受到研究者关注的新型光催化材料。然而,光催化剂粉末在反应介质中难被回收,工业化应用成本较高。本文用三步方法合成了可回收的Fe3O4/SiO2/Bi2WO6磁性复合光催化剂,通过溶剂热法合成具有磁性的Fe3O4,用溶胶凝胶法在Fe3O4表面覆盖SiO2层,后将磁性颗粒与Bi2WO6纳米片相结合。光催化剂的形貌结构及性能通过XRD、SEM、PL、UV-vis进行表征测试。结果表明,直径约500 nm的Fe3O4微球附着在边长约500 nm的Bi2WO6纳米片的表面,SiO2在两者之间起到了粘连作用。光催化剂Fe3O4/SiO2/Bi2WO6对于罗丹明B的光降解活性较好,且有一定磁性,可以通过外加磁场将其从溶液中分离,有较大的应用潜力。  相似文献   

6.
A one-step hydrothermal procedure to form Fe3O4 nanospheres on chemically reduced graphene oxide (CRGO) surfaces was proposed, and these nanocomposites were used as substrates for enzyme immobilization. The as-prepared Fe3O4/CRGO nanocomposites were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), FT-IR and vibrating sample magnetometer. Fe3O4 microspheres are randomly distributed on graphene sheets, and the average diameter of Fe3O4 microspheres is about 260 nm. Horseradish peroxidase (HRP) was used as a model enzyme to investigate the immobilization activity. The HRP loading was 23.3 mg/g supports and retained 70% of the first use after ten cycles. The catalyzed capability of immobilized HRP was investigated and the immobilized HRP exhibited broader pH stability and excellent reusability. The results show that the Fe3O4/CRGO nanocomposites are appropriate for the immobilization of enzyme, and could have potential use in practical.  相似文献   

7.
Core–shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core–shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet–visible (UV–Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was?~?4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~?11.26 emu/g) compared with Fe3O4 powder (~?13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of ??1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of?~???1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.  相似文献   

8.
9.
Poly(3-pyrrol-1-ylpropanoic acid) (PPyAA)-Fe3O4 nanocomposite was successfully synthesized by an in situ polymerization of 1-(2-carboxyethyl) pyrrole in the presence of synthesized Fe3O4 nanoparticles. Evaluation of structural, morphological, electrical and magnetic properties of the nanocomposite was performed by XRD, FT-IR, TEM, TGA, magnetization and conductivity measurements, respectively. XRD analysis reveals the inorganic phase as Fe3O4 and TGA shows about 90 wt% loading of Fe3O4 in the nanocomposite. FT-IR analysis indicates a successful conjugation of Fe3O4 particles with polypyrrole acetic acid. Magnetization measurements show that polypyrrole acetic acid coating decreases the saturation magnetization of Fe3O4 significantly. This reduction has been explained by the pinning of the surface spins by the possible adsorption of non-magnetic ions during the polymerization process. The conductivity and dielectric permittivity measurements strongly depend on the thermally activated polarization mechanism and thermal transition of PPyAA in the nanocomposite structure. Large value of dielectric permittivity (?′) of the nanocomposite at lower frequency is attributed to the predominance of species like Fe2+ ions and grain boundary defects (interfacial polarization).  相似文献   

10.
In the present study, monodisperse Fe3O4 nanoparticles with diameters ranging from 10 nm to 25 nm were synthesized using a simple organic-phase synthetic route and these monodispersed nanoparticles were then used as catalyst for seed growth of carbon nanotube. Fe3O4 nanoparticles were reduced to iron nanoparticles assembly by Argon mixed with 5% Hydrogen gas at 400 °C and then it was examined by atomic force microscopy (AFM), thermomechanical analysis (TMA) and powder diffraction X-ray spectroscopic techniques. XRD indicates that iron clusters are bcc in nature and AFM image shows that the iron nanoparticles assemblies are 50–65 nm in size. To control the agglomeration of iron nanoparticles, nanoporous hybrid support material of Al2O3 and SiO2 was used. However, this matrix also fails to stop the agglomeration of iron nanoparticles mainly due to the inhomogeneous distribution of pore diameters. TMA analysis of iron clusters shows a temperature-dependent morphology, therefore, the CNTs growth temperature critically ascertain the nature and structure of CNTs.  相似文献   

11.
Superparamagnetic Fe3O4 nanoparticles were synthesized via a modified coprecipitation method, and were characterized with X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Zeta potential and FT-IR, respectively. The influences of different kinds of surfactants (sodium dodecyl benzene sulfonate, polyethyleneglycol, oleic acid and dextran), temperatures and pH values on the grain size and properties were also investigated. In this method, Fe3+ was used as the only Fe source and partially reduced to Fe2+ by the reducing agent with precise content. The following reaction between Fe3+, Fe2+ and hydroxide radical brought pure Fe3O4 nanoparticles. The tiny fresh nanoparticles were coated in situ with surfactant under the action of sonication. Comparing with uncoated sample, the mean grain size and saturation magnetization of coated Fe3O4 nanoparticles decrease from 18.4 nm to 5.9-9.0 nm, and from 63.89 emu g−1 to 52-58 emu g−1 respectively. When oleic was used as the surfactant, the mean grain size of Fe3O4 nanoparticles firstly decreases with the increase of reaction temperature, but when the temperature is exceed to 80 °C, the continuous increase of temperature resulted in larger nanoparticles. the grain size decreases gradually with the increasing of pH values, and it remains unchanged when the PH value is up to 11. The saturation magnetization of as-prepared Fe3O4 nanoparticles always decreases with the fall of grain size.  相似文献   

12.
The magnetic nanocomposites of (1 − x)Ni0.5Zn0.5Fe2O4/xSiO2 (x = 0-0.2) were synthesized by the citrate-gel process and their absorption behavior of bovine serum albumin (BSA) was investigated by UV spectroscopy at room temperature. The gel precursor and resultant nanocomposites were characterized by FTIR, XRD, TEM and BET techniques. The results show that the single ferrite phase of Ni0.5Zn0.5Fe2O4 is formed at 400 °C, with high saturation magnetization and small coercivity. A porous, amorphous silica layer is located at the ferrite nanograin boundaries, with the silica content increasing from 0 to 0.20, the average grain size of Ni0.5Zn0.5Fe2O4 calcined at 400 °C reduced from about 18-8 nm. Consequently, the specific surface area of the nanocomposites ascends clearly with the increase of silica content, which is largely contributed by the increase in the thickness of the porous silica layer. The Ni0.5Zn0.5Fe2O4/SiO2 nanocomposites demonstrate a better adsorption capability than the bare Ni0.5Zn0.5Fe2O4 nanoparticles for BSA. With the increase of the silica content from 0 to 0.05 and the specific surface area from about 49-57 m2/g, the BSA adsorption capability of the Ni0.5Zn0.5Fe2O4/SiO2 nanocomposites calcined at 400 °C improve dramatically from 22 to 49 mg/g. However, with a further increase of the silica content from 0.05 to 0.2, the specific surface area increase from about 57-120 m2/g, the BSA adsorption for the nanocomposites remains around 49 mg/g, owing to the pores in the porous silica layer which are too small to let the BSA protein molecules in.  相似文献   

13.
Hollow single crystal Fe3O4 submicrospheres, which exhibit excellent magnetic properties, have been synthesized by a simple solvothermal process. These Fe3O4 particles have nanocrystallites with an average diameter of about 300 nm and are constructed with a hollow sphere structure that has an inside diameter of about 70 nm. The growth of the hollow Fe3O4 submicrospheres involves the cooperation of Ostwald ripening and oriented re-aggregation with increasing reaction time. As the oriented aggregation continues, adjacent nanocrystals fuse together along the (311) direction and the final product is formed as hollow spheres. Optional re-aggregation of the Fe3O4 hollow spheres may happen in the EG and N2H4·H2O solution. The synthesized Fe3O4 particles show different magnetic properties and can be adjustable with morphological variation.  相似文献   

14.
Electrical transport and magnetic properties of newly synthesized conducting polymer nanocomposites involving poly(3,4-ethylenedioxythiophene) (PEDOT) and Fe3O4 nanoparticles are studied. Nanocomposite samples of varying proportions of inorganic to organic components were synthesized by adding EDOT monomer stabilized in miceller solution of DBSA (dodecylbenzene sulphonic acid) to aqueous colloidal dispersion of Fe3O4 nanoparticles, followed by oxidative polymerization using ammonium peroxodisulphate (APS). Transmission electron microscopic (TEM) photographs show presence of distinct spherical Fe3O4 naonparticles having diameter range of 20–40 nm and they are incorporated within the polymer chain in the nanocomposite samples. Temperature-dependent DC conductivity analysis indicates a smooth cross-over of the charge conduction from the high temperature 3D Mott's variable range hopping (VRH) mechanism to the 2D ES (Efros and Shklovoskii)-VRH behaviour at low temperature. Temperature-dependent DC magnetization studies reveal enhancement of blocking temperature (TB) in the nanocomposite samples compared to that of bare Fe3O4 nanoparticles. Core shell morphology of the nanoparticles seems to be the cause for lowering the value of saturation magnetization of the Fe3O4 nanoparticles. Estimated magnetic domain sizes are comparable to those of grain sizes for the nanocomposite samples having lower content of nanoparticles (P50 and P100). Temperature-dependent AC-susceptibility data also supports the superparamagnetic behaviour.  相似文献   

15.
Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent.  相似文献   

16.
The confined growth of CuO, NiO, and Co3O4 nanocrystals in the mesopores of the MS spheres with the help of polyelectrolyte (PE) multilayers by calcination method has been investigated. Measurements and analyses of SEM, XRD, TEM, and TGA showed that the metal oxide (CuO, NiO, or Co3O4) nanoparticles were almost confined in the mesopores of the MS spheres and had good crystallinity. And the resulting composite microspheres with good dispersion are still mesoporous. This approach can be used to prepare composite materials involving metal oxide nanaoparticles, which have potential application in catalytic field. And the results showed that cyclic voltammograms (CV) were valuable for the investigation of catalytic performances of CuO/MS, NiO/MS, and Co3O4/MS composite microspheres.  相似文献   

17.
Porous Fe3O4-decorated graphene (GN–Fe3O4) composites with different microstructures were successfully synthesized by a modified two-step method. The microstructure and morphology were confirmed by X-ray diffraction (XRD), transmission electron microscopy and scanning electron microscopy. XRD studies show that the products consist of highly crystallized Fe3O4 but disorderedly stacked GN sheets. Electron microscopy images reveal that Fe3O4 nanoparticles with different sizes and microstructures are uniformly coated on both sides of GN sheets, without large vacancies or apparent aggregation. Electromagnetic wave absorption properties of epoxy containing 30 wt.% GN–Fe3O4 composites were investigated at room temperature in the frequency range of 0.5–18 GHz. In particular, the porous, flower-like Fe3O4-decorated GN sample exhibits an enhanced dielectric loss due to the porous microstructure of Fe3O4. The multiple absorbing mechanisms attribute to the improved impedance matching which indicates the as-prepared porous GN–Fe3O4 composites could be a potential candidate for lightweight electromagnetic wave absorption materials.  相似文献   

18.
In this report, a polyacrylamide gel route is introduced to synthesize Bi2Fe4O9 nanoparticles. It is demonstrated that high-phase-purity Bi2Fe4O9 nanoparticles can be prepared using different chelating agents. Interestingly, however, the particle size of the products is found to be dependent on the choice of chelating agent. The use of EDTA as the chelating agent allows the production of Bi2Fe4O9 nanopowder with a relatively smaller particle size. The photocatalytic experiments reveal that the as-prepared Bi2Fe4O9 nanoparticles possess excellent photocatalytic activity for oxidative decomposition of methyl red under ultraviolet and visible light irradiation. Magnetic hysteresis loop measurement shows that the Bi2Fe4O9 nanoparticles exhibit a weak ferromagnetic behavior at room temperature.  相似文献   

19.
The visible-light-driven photocatalyst Ag/β-Bi2O3 microspheres were synthesized by a simple chemical method. First, β-Bi2O3 microspheres were obtained by a thermal treatment of sphere-like Bi2O2CO3 precursor at 360 °C for 3 h in air and then Ag nanoparticles were in situ incorporated into β-Bi2O3 microspheres by impregnation method. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and photoluminescence measurements. The experimental results demonstrated that the visible light absorption of β-Bi2O3 photocatalyst is greatly enhanced with the incorporation of Ag nanoparticles. The SEM and TEM observations revealed that the Ag nanoparticles can be homogenously incorporated in the β-Bi2O3 microspheres. The photocatalytic activity of Ag/β-Bi2O3 sample was evaluated by the photodegradation of the Rhodamine-B under visible light irradiation as a function of Ag content. It is found that the photocatalytic efficiency of β-Bi2O3 can be significantly improved with the incorporation of Ag nanoparticles up to 2.0 wt% Ag. The mechanism for the enhanced photocatalytic activity is also presented.  相似文献   

20.
The monodisperse chitosan-coated Fe3O4 nanoparticles with a mean diameter of 13.5 nm and 4.92 wt% chitosan were used as an anionic magnetic nano-adsorbent for the recovery of Au(III) ions from aqueous solutions. It was found that Au(III) ions could be fast and efficiently adsorbed, and the adsorption capacity increased with the decrease in pH due to the protonation of the amino groups of chitosan. The adsorption data obeyed the Langmuir equation with a maximum adsorption capacity of 59.52 mg/g (1210 mg/g based on the weight of chitosan) and a Langmuir adsorption equilibrium constant of 0.066 l/mg. From the studies on the adsorption kinetics and thermodynamics of Au(III) ions, it was found that the adsorption process obeyed the pseudo-second-order kinetic model. Furthermore, the time required to reach the equilibrium was significantly shorter than those using the micro-sized adsorbents due to the large available surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号