首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fusion Engineering and Design》2014,89(9-10):1969-1974
The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design.  相似文献   

2.
After approval of the preliminary design of the ITER EC H&CD Upper Launcher, ECHUL-CA, a consortium of several European research institutes, was founded to pool resources for approaching the final design. At the end of 2011 the consortium has signed a 2 years contract with F4E to go ahead with the work on the launcher. The contract deals with design work on both the port plug, forming the structural system, and the mm-wave-system, which injects the RF-power into the plasma. Within the period of this contract all components being part of the Tritium confinement, of which the closure plate, the support flange, the diamond windows and the waveguide feed-throughs are the most outstanding ones, will get the status of the final design.Important steps to be done for the structural system are the optimization of the mechanical behavior of the launcher, leading to minimum deflections of the port plug during plasma disruptions and optimum seismic resistance. To reduce the effect of halo currents it was decided to recess the first wall of 100 mm compared to the regular blanket tangent. This recess requires substantial changes of the cooling system and the thermo-hydraulic design of the launcher. Also the layout of the shielding arrangement and the integration of the mm-wave system need significant revision. Moreover manufacturing aspects and enhanced remote handling capability are taken into account.For the final design also quality aspects must be considered; thus the design is elaborated with respect to applicable codes and standards, material specifications, risk analyses and the RAMI (reliability, availability, maintainability and inspectability) analysis to guarantee maximum performance of the device.This paper outlines the present status of the structural system of the EC H&CD upper launcher and represents the most recent steps towards its final design.  相似文献   

3.
The European test blanket module (EU-TBM), first prototype of the breeding blanket concepts under development for the future DEMO power plant to produce the tritium, will be developed to be tested in three equatorial ports of ITER dedicated to this. The CEA Cadarache under the contract of Association EURATOM/CEA and in close relation with Association EURATOM/HAS works on the integration of the EU-TBM inside ITER tokamak.The installation of the TBM into the vacuum vessel is made with the help of a port plug, constituted with two components: the Shield module and the Port-Plug frame. The Shield module provides the neutron shielding inside the Port-Plug frame, which maintains in cantilever position the TBM and its shield module and closes the vacuum vessel port.This paper will describe the EU-TBM design and integration activities on the cooled shield module and on its interface with the TBM component. A particular attention, in term of thermal and mechanical studies, is dedicated to the design of the shield and test blanket module attachment, and also to the shield design and its internal cooling system.  相似文献   

4.
5.
Four ITER EC H&CD (Electron Cyclotron Heating and Current Drive) Upper Launchers will be installed in the ITER Tokamak to counteract plasma instabilities by injection of up to 20 MW of millimeter-wave power at 170 GHz. Each Launcher features a structural system which is equipped with eight beam lines in a Front-Steering arrangement. The Launcher development has reached the status of a preliminary design, since the corresponding review meeting was held in November 2009 at the ITER site in Cadarache. All design work is performed by several EU associations being contracted by Fusion for Energy (F4E). The structural design of the Upper Launcher consists of three sub-components: First of all the Blanket Shield Module (BSM), which fills the gap between the regular blankets. The BSM dissipates about 80% of the nuclear heating and envelopes the front mirrors of the mm-wave system. Further the Launcher Mainframe, which provides a rigid structure for precise and secure integration of the mm-wave system to guarantee reliable operation under all potential scenarios. Finally the internals, such as dedicated support structures for the mm-wave system, shielding elements and components for gas and coolant supply. The most challenging design aspects are proper dissipation of nuclear heating in zones of high heat flux, the mechanical integrity during plasma disruptions, the integration of sufficient shielding material and the precise alignment of the mm-wave system under tight space conditions. Furthermore the definition of efficient manufacturing routes with respect to tolerance compliance requires substantial investigation and, though the Launcher is designed for ITER lifetime, potential repair by adequate remote handling procedures must be considered. This paper presents the recent status of the preliminary structural design and outlines future design approaches with the main focus on manufacturing methods, remote handling capability of the sub-components and optimum integration of the internals to bring the EC Launcher towards the final design.  相似文献   

6.
《Fusion Engineering and Design》2014,89(9-10):1899-1904
The electron cyclotron resonance heating upper launcher (ECHUL) is going to be installed in the upper port of the ITER tokamak thermonuclear fusion reactor for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). The paper reports the latest neutronic modeling and analyses which have been performed for the ITER reference front steering launcher design. It focuses on the port accessibility after reactor shut-down for which dose rate (SDDR) distributions on a fine regular mesh grid were calculated. The results are compared to those obtained for the ITER Dummy Upper Port. The calculations showed that the heterogeneous ECHUL design gives rise to enhanced radiation streaming as compared to the homogenous dummy upper port. Therefore the used launcher geometry was upgraded to a more recent development stage. The inter-comparison shows a significant improvement of the launchers shielding properties but also the necessity to further upgrade the shielding performance. Furthermore, the analysis for the homogenous dummy upper port, which represents optimal shielding inside the launcher, demonstrates that the shielding upgrade also needs to include the launcher's environment.  相似文献   

7.
8.
Within the ITER vacuum vessel, there are a significant number of diagnostics, measuring items such as plasma density, temperature and impurities; and providing a visible image of the ITER plasma. Since reliable diagnostic measurements are critical to the successful operation of ITER, robust structural design of the diagnostic supports, or port plugs, is also essential. The port plugs are substantial steel structures, mounted in both the equatorial and upper ports on the vacuum vessel. They not only support the diagnostics, but also provide functions of baking, cooling, and neutron shielding.Significant progress has been made in the mechanical design of the port plugs, culminating in the proposal of a new conceptual design, which uses the lid of the port plug as a structural member. This allows the port plug's mass to be more efficiently distributed, providing additional space for diagnostics, and better neutron shielding. A critical aspect of the design has been to provide a suitable interface between the lid and body of the structure which will support all of the structural loads which may be applied to the port plug. The lid also allows easy access to the diagnostic components when maintenance is required.Analyses have been carried out in support of the proposed changes. Structural analysis indicates that the wall thickness of the port plug could be reduced from 130 mm to 40 mm. Thermal analysis has demonstrated that the cooling and baking requirement for the port plug structure is less challenging than originally thought, and hence could be carried out in a simpler fashion. Neutronics analysis has led to a better understanding of the impact of different shielding materials and cavities through the contents of the port plug, and show that it may be possible to reduce the shielding thickness from 2000 mm to 1000 mm. Further electromagnetic analysis has been carried out demonstrating that modelling the effect of plasma movement will not affect the resultant loads by more than 20%, and that the originally defined port plug loads were probably conservative.  相似文献   

9.
Electromagnetic (EM) loads due to eddy current and halo current during plasma disruptions are evaluated for the ITER diagnostic upper port plug. To reduce strong EM loads acting on the port plug fixed to the vacuum vessel like a cantilever beam, three design options have been considered: removal of the diagnostic first wall, slitting of the diagnostic shield module and recess of the port plug. The main focus of the present study is to examine the efficacy of these options in terms of EM loads on the upper port plug. It is found that making slits is more effective than removing the first wall. It is also shown that the upper port plug needs to be recessed to reduce the EM load induced by halo current.  相似文献   

10.
《Fusion Engineering and Design》2014,89(7-8):1009-1013
The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position.The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure.The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements.  相似文献   

11.
The ITER blanket is in the final stage of design completion. The issues raised during the 2007 ITER design review about the first wall (FW) heat loads and remote handling strategy have been addressed, while integrating the recently confirmed in-vessel coils. This paper focuses on the FW design, which is nearing completion. Key design justifications are presented, followed by a summary of the current status of the manufacturing plan and R&D activities.  相似文献   

12.
The USITER, through the Princeton Plasma Physics Lab (PPPL), is responsible for the delivery of several fully integrated upper, equatorial and lower port plugs dedicated for the diagnostics in ITER. Each port plug package consists of a generic port plug structure and a set of diagnostics and diagnostic housings. The shielding design of the integrated port plugs calls for maintaining a dose level not to exceed 100 μSv/h inside the interspace of each port; the room behind the port plug where maintenance personnel access the rear of the port. This is set as an upper target design in order to perform routine maintenance 1E6 sec (~two weeks) following shutdown. Expensive remote handling robots and tooling are required otherwise. In this paper we present results from a parametric study aimed at providing initial assessment of the attainable dose rates in the diagnostics ports and their extension areas in order to properly address the duration time and frequency for the workers to perform the scheduled maintenance. The nuclear analysis is performed using both the serial version and the distributed memory parallel (DMP) version of the ATTILA-7.1.0, 3-D FEM Discrete Ordinates code, along with the FENDL2.1/FORNAX and ANSI/ANS-6.1.1-1977 data bases.  相似文献   

13.
In the field of the ITER port plug engineering and integration task, CEA has contributed to define proposals concerning the port plugs vacuum sealing interface with the vessel flange and the equatorial plug handling.The 2001 baseline vacuum flange sealing consisted of TIG welding of a 316L strip plate on to U shapes. This arrangement presented some issues like welding access, implementation of tools, lip consumption, complex local leak test, continuous leak checking. Therefore, an alternate sealing solution based on the use of metallic gaskets is proposed. The different technical aspects are discussed to explain how this design can simplify the maintenance and deal with safety and vacuum requirements.The design of the mechanical attachment and vacuum sealing of the plug has constantly evolved, but the associated remote handling equipment was not systematically reviewed. An update of the cask and maintenance procedure was studied in order to design it in accordance with the last generic plug flange design. This includes a concept of a gripping system that uses the plug flange bolting area and, to help the remote handling process, a cantilever assisting system is suggested to increase the reliability of the transfer operation between vacuum vessel and cask.  相似文献   

14.
ITER port cells are located outside the bio-shield of the Tokamak. During shutdown, the shielding blanket may be replaced and the radioactive blankets will be transported through equatorial port cells, increasing the radiation exposure in the gallery. To examine the dose rate in the gallery with respect to the dose limitation specified by ITER, the activation of typical shielding blanket was calculated using the cell based rigorous two-step method. Then the activated blankets were loaded in cask and moved to the port cell, the radiation level in the port cell and gallery during the worst case was calculated. The shielding capability of port cell door was analyzed and the design was optimized based on the present proposal. As shown from the results, the dose rate from cask is much higher than that from activated Tokamak. The main concern for port cell door should be the concrete lintel and penetrations through it, providing basis for further engineering design of the port cell shielding.  相似文献   

15.
One of the main engineering performance goals of ITER is to test and validate design concepts of tritium breeding blankets. To accomplish these goals, three ITER equatorial ports are dedicated to the test of Test Blanket Modules (TBMs) that are mock-ups of tritium breeding blankets. These TBMs, associated with appropriate shield blocks, will also provide the same thermal and nuclear shielding as the main blanket. The main function of TBM Port Plug (PP) is to accommodate TBMs and provide a standardized interface with the vacuum vessel (VV)/port structure.The feasibility of the design concept of the Frame including two Dummy TBMs has been investigated by proposing design improvements of the reference design through an extensive set of thermal, electromagnetic (EM) and stress analyses. As well, the related static strength was evaluated in accordance with the structural design criteria for ITER in-vessel components (SDC-IC). This paper outlines the engineering aspects of the ITER TBM Frame and Dummy TBM and focuses on the feasibility of the present design by structural assessment.  相似文献   

16.
Europe is involved in the procurement of most of the high-technology items for the ITER device (e.g. parts of the superconducting Toroidal (TF) and Poloidal Field (PF) coils, the vacuum vessel (VV), the in-vessel components, the remote handling, the additional heating systems, the tritium plant and cryoplant and finally parts of the diagnostics). In many cases the technologies required to manufacture these components are well established, in others there is still ongoing design and R&D work to select and optimise the final design solutions and to consolidate the underlying technologies as, for example, in the areas of heating and current drive, plasma diagnostics, shield blanket and first wall, remote handling, etc. A design review has recently been conducted by the ITER Organisation, with the support of the Domestic Agencies (DAs) established by the countries participating to ITER, to address the remaining outstanding technical issues and understand the associated implications for design, machine performance, schedule and cost.This paper provides an update of the design and technical status of EU contributions to ITER.  相似文献   

17.
18.
ITER equatorial port cell outside the bio-shield plug is a place to allow personnel access after shutdown that accommodates various sensitive equipment and pipes. Gamma dose rate after shutdown of 1 day in the port cell should be within 10 μSv/h for occupational safety which is one order of magnitude less than that in the port interspace by the shielding of bio-shield plug. To verify the shielding property of the bio-shield plug, the distributions of gamma dose rates in port cell were studied. Based on the ITER neutronics model Alite4 which is a three-dimensional ITER tokomak neutronics model for MCNP calculations with a 40 degree extent in the toroidal direction and vertical reflecting bounded planes on both sides, the equatorial port was updated according to a conceptual CAD model using Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM). A 2-step method of gamma dose rate calculation was used for shutdown dose rates in CAD-based Multi-Functional 4D Neutronics Simulation System (VisualBUS). The result showed that gamma dose rates in the port cell were higher than the desired limit. Refinements to the bio-shield plug design were suggested to ensure that dose rates in the port cell were within the design value for maintenance access.  相似文献   

19.
ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the diagnostic first walls (DFWs), diagnostic shield modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.  相似文献   

20.
Main function of the ITER blanket system [1], [2], [3] is to shield the vacuum vessel (VV) from nuclear radiation and thermal energy coming from the plasma. Blanket system consists of discrete blanket modules (BM). Each BM is composed of a first wall panel and a shield block (SB). The shield block is attached to the VV by means of four flexible supports and three or four shear keys, through key pads. All listed supports do have parts with ceramic electro-insulating coatings necessary to exclude the largest loops of eddy currents and restrict EM loads. Electrical connection of each SB to the VV is through two elastic electrical straps. Cooling water is supplied to each BM by one coaxial water connector. This paper summarizes the recent evolution of the blanket attachment system toward design solutions compatible with design loads and numbers of load cycles, and providing sufficient reliability and durability. This evolution was done in a frame of pre-defined external interfaces. The ongoing supporting R&D is also briefly described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号