首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
白智全  李晓彤  赵芳  王常慧  袁东风 《信号处理》2012,28(10):1446-1452
超宽带(UWB)信号极宽的带宽使超宽带系统不可避免地与其频带内已有的窄带系统产生干扰。本文针对超宽带系统提出了两种新型的具有窄带干扰(NBI)抑制能力的修正非线性chirp超宽带波形。这两种波形基于窄脉冲超宽带的通信方式设计,其能量可以在时间上均匀分布,从而避免了高峰值功率的问题。此外这两种设计方法对有用信号没有损失,只需要对波形进行时域处理即可改变相应的频域特性。仿真结果和理论分析显示,基于这两种超宽带波形的直接序列扩频二进制相移键控超宽带(DS-BPSK UWB)系统,在抑制窄带干扰方面极大优于采用传统线性chirp波形的超宽带系统。   相似文献   

2.
Ultra wideband (UWB) is a promising technology in delivering high data rate for short range wireless communication systems. Because of their large bandwidth, UWB signals may encounter some problems especially with high sampling rate requirements. Moreover, coherence existence with other narrowband systems is a major concern which needs to be addressed through proper mechanisms. The problem becomes so complex if multiple users exist. Since narrowband interference (NBI) signals have sparse representation in the discrete cosine transform (DCT) domain, they can be estimated and suppressed using Compressive Sensing (CS). CS also has the ability to reduce the high sampling rate requirements. For training based NBI mitigation with CS, three groups of pilot symbols are used to estimate the NBI signal subspace, the UWB signal subspace, and to provide information about the channel. In this paper, the distribution of pilot symbols among the three groups is investigated in the presence of strong NBI. The investigation is based on the bit error rate performance and throughput. The influence of each pilot symbols group is studied. The performance is also evaluated in the presence of multiuser interference in addition to the NBI. Simulation results show that the size of the third group of pilot symbols which is used to estimate the channel is the most dominant one.  相似文献   

3.
本文提出了一种基于多天线辅助估计的UWB(超宽带)快速捕获算法,利用UWB信号的循环平稳特性,将接收信号与它自身延迟一个信息位产生的模板相关,应用最大似然方法就可得到一个粗略的同步时间估计,在充分利用线性天线阵空间分集增益的情况下,这种估计相当准确。在此基础上继续进行精确同步,直到捕获任一符号位的第一帧第一个到达脉冲。文中采用流图法给出了本算法平均捕获时间的闭式解。理论分析和计算机模拟表明,该算法与同等硬件复杂程度和同等捕获精度的其他捕获方法相比可明显地缩短平均捕获时间。  相似文献   

4.
Due to the huge bandwidth of ultra-wide-band (UWB) systems, in-band narrow-band interference (NBI) may hinder receiver performance. Sources of potential NBI that lie within the IEEE 802.15.3a UWB bandwidth are presented. To combat interference in multi-band orthogonal frequency-division multiplexing (MB-OFDM) UWB systems, an analog notch filter is designed to be included in the UWB receive chain. The filter's architecture is based on feedforward subtraction of the interference, and includes a least-mean-square (LMS) tuning scheme to match amplitudes of the two paths. An 8-bit discrete control is used to adjust the filter's center frequency across the UWB baseband. It was fabricated in TSMC's 0.18-mum process, and experimental results are provided  相似文献   

5.
The analysis and optimization of a notch filter to combat in-band narrowband interference (NBI) for multiband orthogonal frequency division multiplexing (MB-OFDM)-based ultra-wideband (UWB) systems is presented. Unintentional radiation of electronic devices can reside in the UWB band and jam the communication. Erasing the interference with a programmable analog notch filter reduces the requirement for the analog-to-digital converter resolution in the presence of NBI. The order and approximation of the notch filter are determined, and the filter’s bandwidth is optimized to minimize the packet error rate. Simulation results indicate that the UWB system with suppression scheme can handle up to 14 dB more in-band interference power.  相似文献   

6.
Ultra wideband (UWB) is the most preferred candidate for body area networks (BAN). The higher data rate and lower multipath fading makes it highly suitable for the design of BAN. However, narrowband interference (NBI) may significantly degrade the performance of UWB. The paper presents an effective method of NBI mitigation for UWB BAN. The method uses modified Hermite pulse (MHP) in lieu of Gaussian and other pulse shapes. The spectral characteristics of the MHP make them immune to interference. The performance has been tested in various body postures in the CM4 channel model of the BAN, and further validated by transmitting medical signals like electrocardiography and MRI. The results show that MHP pulse is highly immune to NBI.  相似文献   

7.
An M‐ary bi‐orthogonal modulation scheme for ultra‐wideband (UWB) systems capable of narrowband interference (NBI) suppression is proposed in this letter. We utilize a set of bi‐orthogonal pulse series to achieve NBI suppression. Through analysis and simulation, we verify that the proposed scheme can suppress NBIs effectively.  相似文献   

8.
The impact of narrowband interference (NBI) on two ultra wideband (UWB) systems is analyzed. The two systems are impulse radio (IR) and a variation of it, termed direct-sequence IR (DS-IR). The signal-to-noise ratio (SNR) at the decision device of a correlation receiver is computed for both systems, assuming that the NBI is wide sense stationary and that the channel is frequency-selective. The SNR is expressed by means of a simple equation involving the signal and the interference spectrum. Next, a statistical model for the interference is introduced, considering the interference as the sum of a given number of sinusoidal signals with random powers and frequencies. The bit-error rate of IR and DS-IR is derived. The results are then specialized and compared with simulations in three case studies of practical interest, where the NBI is a single jammer with deterministic power and frequency, a multitone signal with random frequencies, or a grid of interfering signals with random powers.  相似文献   

9.
Interference from IEEE 802.11a systems affects ultra‐wideband (UWB) systems significantly. In this letter, we suggest a novel narrow‐band interference (NBI) suppression technique based on the singular value decomposition (SVD) algorithm in time‐hopping pulse amplitude modulation (TH‐PAM) UWB systems. The SVD algorithm is used to approximate the interference which then is subtracted from the received signals. In contrast to the conventional notch filter and rake receiver, our method is more effective and the receiver complexity can be greatly reduced.  相似文献   

10.
IEEE 802.11a systems which operate around 5 GHz and overlap the band of UWB signals will interfere with UWB systems significantly. In this letter, a novel narrow-band interference (NBI) suppression technique based on the singular value decomposition (SVD) algorithm is proposed in direct sequence ultra-wideband (DS-UWB) systems in wireless multipath channels. SVD is used to approximate the interference which then is subtracted from the received signals. In contrast to the conventional suppression methods such as the notch filter and the maximal-ratio combining partial RAKE (MRC PRAKE) receiver, our proposed technique is simple and robust, the hardware complexity of the receiver can be reduced greatly.  相似文献   

11.
This letter presents an analysis of the effect of narrowband interference (NBI) on ultrawideband (UWB) time-hopping (TH) systems in the presence of multipath fading using both analytical derivations and simulations. Our analysis demonstrates that NBI may be an issue in some instances. In addition, we suggest three NBI suppression schemes for combating NBI in UWB TH systems. Single-link performance of these schemes in conjunction with a Rake-type receiver structure is estimated for both the ideal all-Rake receiver and the simpler partial-Rake receiver in an indoor environment. Two UWB pulse shapes that meet the Federal Communications Commission rules for UWB communications are considered in the investigation.  相似文献   

12.
This paper presents an analytical expression for the signal-to-noise ratio (SNR) of the pulse position modulated (PPM) signal in an ultrawideband (UWB) channel with multiple transmit and receive antennas. A generalized fading channel model that can capture the cluster property and the highly dense multipath effect of the UWB channel is considered. Through simulations, it is demonstrated that the derived analytical model can accurately estimate the mean and variance properties of the pulse-based UWB signals in a frequency-selective fading channel. Furthermore, the authors investigate to what extent the performance of the PPM-based UWB system can be further enhanced by exploiting the advantage of multiple transmit antennas or receive antennas. Numerical results show that using multiple transmit antennas in the UWB channel can improve the system performance in the manner of reducing signal variations. However, because of already possessing rich diversity inherently in the UWB channel, using multiple transmit antennas does not provide diversity gain in the strict sense [i.e., improving the slope of bit error rate (BER) versus SNR] but can possibly reduce the required fingers of the RAKE receiver for the UWB channel. Furthermore, because multiple receive antennas can provide higher antenna array combining gain, the multiple receive antennas technique can be used to improve the coverage performance for the UWB system, which is crucial for a UWB system due to the low transmission power operation.  相似文献   

13.
It is known that a major practical implementation challenge of ultra-wideband (UWB) receivers is the design of the coarse acquisition stage. Due to the fine time resolution of UWB signals, the acquisition stage has to acquire a large number of low-energy multipath components, with no or little knowledge of the state of the channel. In addition, the complexity further increases with the presence of narrowband interference due to the proposed spectral overlay. Our goal in this paper is to evaluate the affects of the lack of a priori knowledge of the channel state and the presence of narrowband interference during acquisition. Maximum-likelihood and maximum a posteriori procedures for estimation in the presence of narrowband interference are formulated, and two different interference mitigation techniques are evaluated. In particular, this paper considers UWB communication systems that use spectral encoding as both the multiple access scheme and the interference suppression technique. The qualitative results are, however, believed to be valid for any UWB system implementation. It is shown that the acquisition performance strongly depends on the amount of a priori knowledge of the channel state at the receiver, and on whether or not interference suppression is employed.   相似文献   

14.
The experiments of time reversal (TR) technique with ultra-wideband (UWB) signals are conducted in indoor propagation channel by using time-domain technique. The UWB propagation channel response of a typical indoor environment is measured and time reversal technique is applied for signal transmission. The characteristics of the TR scheme for different propagation scenarios, line-of-sight (LOS) and non-LOS with different wideband receiving antennas are evaluated. The measurement results of signals focusing gain, temporal sidelobes and average signal energy for different propagation scenarios are presented. The spectral analysis of TR-UWB signals is conducted and an inherent bandwidth limit of the classical TR-UWB scheme is observed. To overcome the bandwidth restrictions, novel design architecture is proposed. The new design adjusts the TR signal by a way to support ultra-wide bandwidth and provides better matching to the UWB spectral mask with better temporal focusing features.  相似文献   

15.
In order to alleviate the narrowband interference (NBI) to ultra wideband (UWB) systems, we propose two non‐linear UWB chirp waveforms based on the arctrigonometric and archyperbolic function in this paper. The proposed UWB pulses can obtain good performance in NBI suppression. Both of the two chirp pulses require only the time domain processing because of the inherent relationship between the frequency domain and the time domain. Theoretical analysis and simulation results show that the direct sequence pulse binary amplitude modulation (DS‐BPAM) UWB systems with the proposed chirp waveforms can achieve excellent NBI suppression performance and outperform the linear chirp waveform based UWB system significantly. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes a spectrum sharing technique for coexistence of multiband orthogonal frequency division multiplexing ultra wideband (UWB) system with other primary wireless services. Existing technique like tone nulling do not utilize subcarriers within victim band, hence affects the throughput of the system. The same nulling effect can be produced by applying antiphase tones across transmitting antennas and simultaneously utilizing the victim band to transmit the data. This scheme can be applied without any impact on the current specifications of the system. In this paper complex orthogonal space time frequency code is implemented to achieve diversity in multiple antenna system. UWB receiver processing is described for both victim and unprotected band. A less computationally complex active interference cancellation scheme is also applied to improve notch depth. The proposed scheme is implemented for fixed frequency interleaving operation and discussed for time frequency interleaving with special cases. The proposed scheme is very simple to implement and provide flexibility in terms of notch width and depth.  相似文献   

17.
To suppress narrowband interference (NBI) in an ultra‐wideband (UWB) communications environment, a null phase‐shift polarization (NPSP) filter is proposed. The proposed NPSP filter is a combination of a linear polarization‐vector transformer (PVT), a conventional single notch polarization (SNP) filter, and an amplitude and phase compensator (APC). The NBI, which has polarized states different from those of the UWB, can be suppressed completely and the UWB signal can be recovered without distortion if the polarized states can be estimated exactly. Analytical and simulation results indicate that the signal‐to‐interference ratio (SIR) can be improved effectively after NPSP filtering. The proposed NPSP filter can be implemented in a time‐hopping spread spectrum (TH‐SS) or a direct‐sequence spread spectrum (DS‐SS) UWB system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The performance of asynchronous time-hopping ultra-wideband (TH-UWB) multiple access spread spectrum is analytically investigated in a UWB realistic multipath channel and in the presence of narrowband interference (NBI). In particular, an interference suppression receiver for TH-UWB wireless systems is proposed. It consists of selecting the first strongest multipath components using an appropriate Rake receiver with the path diversity combining being based on the minimum mean square error criterion. Pulse position modulation and pulse amplitude modulation schemes are considered. The expressions of the signal-to-interference and noise ratio at the output of the selective Rake combiner, the system multi-access data rate as well as the conditional bit error rate are also derived. The impact of different parameters, such as the number of selected dominant paths, the NBI power as well as the time hopping sequence code on the system performance are studied. Results reveal that the proposed receiver can almost completely eliminate the effect of NBI.  相似文献   

19.
On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS   总被引:14,自引:0,他引:14  
This paper evaluates the level of interference caused by different ultra-wideband (UWB) signals to other various radio systems, as well as the performance degradation of UWB systems in the presence of narrowband interference and pulsed jamming. The in-band interference caused by a selection of UWB signals is calculated at GSM900, UMTS/wideband code-division multiple-access (WCDMA), and Global Position System (GPS) frequency bands as a function of the UWB pulsewidth. Several short-pulse waveforms, based on the Gaussian pulse, can be used to generate UWB transmission. The two UWB system concepts studied here are time hopping and direct sequence spread spectrum. Baseband binary pulse amplitude modulation is used as the data modulation scheme. Proper selection of pulse waveform and pulsewidth allows one to avoid some rejected frequency bands up to a certain limit. However, the pulse shape is also intertwined with the data rate demands. If short-pulses are used in UWB communication the high-pass filtered waveforms are preferred according to the results. The use of long pulses, however, favors the generic Gaussian waveform instead. An UWB system suffers most from narrowband systems if the narrowband interference and the nominal center frequency of the UWB signal overlap. This is proved by bit-error rate simulations in an additive white Gaussian noise (AWGN) channel with interference at global system for mobile communication (GSM) and UMTS/WCDMA frequencies.  相似文献   

20.
Ultra-wideband (UWB) technology has been considered to offer an innovative solution for future short-range high-speed wireless communications. These systems use very low transmission power, spread over a bandwidth of several gigahertz. The very low transmission power and the large bandwidth used, enable UWB radio systems to co-exist with other narrowband systems over the same frequency band without interfering the narrowband systems. Nevertheless, these narrowband systems may cause interference which may jam the UWB receiver completely. Since standard narrowband interference suppression techniques are not applicable, techniques for interference suppression have to be developed. In this paper, the method of the local polynomial estimator in time-hopping impulse radio (TH-IR) for UWB communication is considered, which should not estimate any parameter of channel. And the narrowband interference (NBI) is modeled as a stationary process. Theoretical analysis of this algorithm reveals that it can eliminate the narrowband interference almost completely and can be computed by simple expression. Moreover, the sampling rate is very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号