首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Vitamin D3 (VD3) induces monocytic differentiation of U937 cells. Induction of p21Cip1/WAF1 (p21) and subsequent G0/G1 cell-cycle arrest are required in this process. Using a system of inducible expression of ectopic p21, we demonstrated the important role of p21 in the induction of monocytic differentiation in U937 cells. Prior induction of antisense-p21 expression significantly suppressed p21 expression, and resulted in inhibition of VD3-induced U937 differentiation. Moreover, induction of expression of antisense-p21 in VD3-differentiated U937 cells resulted in apoptosis of the cells. This was associated with activation of Cdc2 and caspase-3 like protease. Our results suggest that p21 is required for the initiation of the early steps of differentiation as well as survival of differentiated cells.  相似文献   

5.
We have examined the effects of the macrocyclic lactone protein kinase C (PKC) activator bryostatin 1 on taxol-induced apoptosis and inhibition of clonogenicity in the human monocytic leukemia cell line U937. Exposure of cells to bryostatin 1 (10 nM; 15 hr) after (but not before) a 6-hr incubation with 0.5 microM taxol significantly increased apoptosis and resulted in an approximately 3 log reduction in clonogenicity. Cell cycle analysis revealed that the increase in apoptotic cells following bryostatin 1 treatment occurred primarily in the population undergoing taxol-mediated G2M arrest. The actions of bryostatin 1 were not attributable to potentiation of taxol-induced tubulin stabilization or to a reduction in the intracellular retention of taxol. Following exposure of cells to taxol, the Bcl-2 protein displayed an alteration in mobility that was not modified appreciably by bryostatin 1 treatment. The mobility shift in Bcl-2 protein from cells exposed to taxol followed by bryostatin 1 was eliminated by treatment of lysates with the protein phosphatase 2A (PP2A); the latter effect was blocked by okadaic acid. Treatment of cells with taxol followed by bryostatin 1 did not increase the amount of total Bax (compared with treatment with taxol alone), but did increase the amount of free Bax in the supernatant fraction. Finally, the ability of bryostatin 1 to potentiate taxol-induced apoptosis in U937 cells was mimicked closely by 2'-amino-3'-methoxyflavone (PD98059), a specific inhibitor of the mitogen-activated protein kinase (MAPK) kinase (MEK). Collectively, these findings indicate that bryostatin 1 increases the susceptibility of U937 cells to taxol-induced apoptosis and inhibition of clonogenicity. They also raise the possibility that this phenomenon may involve functional alterations in Bcl-2 and/or other proteins involved in regulation of the cell death pathway.  相似文献   

6.
7.
8.
Human monocytic leukemia U937 cells readily undergo apoptosis when they are treated with TNF-alpha, anti-Fas antibody and anticancer drugs such as etoposide and Ara-C. To study the mechanism of apoptosis, we developed a novel apoptosis-resistant variant, UC, from U937 cells. The UC cells showed resistance to apoptosis induced by TNF-alpha, anti-Fas antibody, etoposide and Ara-C. Somatic cell hybridization between U937 and UC showed that apoptosis-resistance to TNF-alpha in UC was genetically recessive and resistance to etoposide was dominant, suggesting that UC has at least two different mutations functionally involved in apoptosis. Mechanistic analysis revealed that UC cells expressed reduced amounts of c-Myc. Transfection of the c-myc gene into UC cells restored the sensitivity of the cells to undergo apoptosis induced by TNF-alpha and anti-Fas, which attributes apoptosis-resistance in this circumstance to the reduced expression of c-Myc. On the other hand, c-myc transfection into UC cells could not restore their sensitivity to etoposide- and Ara-C-induced apoptosis, arguing against the role of c-myc in chemotherapy-induced apoptosis. However, treating the parental U937 cells with antisense oligonucleotides designed to reduce c-Myc expression rendered the cells resistant to etoposide-induced as well as to TNF-alpha-induced apoptosis. These results indicate that the reduced expression of c-Myc in UC is strongly associated with the resistance to etoposide-induced apoptosis. Our finding that c-myc transfection into UC could not restore the sensitivity to etoposide-induced apoptosis, suggests UC could have a second mutation that confers resistance to etoposide-induced apoptosis in a genetically dominant manner. Taken together, our present results indicate that c-Myc plays a role in cellular susceptibility to death receptor-mediated and chemotherapy-induced apoptosis.  相似文献   

9.
10.
11.
Ceruloplasmin is a 132-kDa glycoprotein abundant in human plasma. It has multiple in vitro activities, including copper transport, lipid pro- and antioxidant activity, and oxidation of ferrous ion and aromatic amines; however, its physiologic role is uncertain. Although ceruloplasmin is synthesized primarily by the liver in adult humans, production by cells of monocytic origin has been reported. We here show that IFN-gamma is a potent inducer of ceruloplasmin synthesis by monocytic cells. Activation of human monoblastic leukemia U937 cells with IFN-gamma increased the production of ceruloplasmin by at least 20-fold. The identity of the protein was confirmed by plasmin fingerprinting. IFN-gamma also increased ceruloplasmin mRNA. Induction followed a 2- to 4-h lag and was partially blocked by cycloheximide, indicating a requirement for newly synthesized factors. Ceruloplasmin induction in monocytic cells was agonist specific, as IL-1, IL-4, IL-6, IFN-alpha, IFN-beta, TNF-alpha, and LPS were completely ineffective. The induction was also cell type specific, as IFN-gamma did not induce ceruloplasmin synthesis in endothelial or smooth muscle cells. In contrast, IFN-gamma was stimulatory in other monocytic cells, including THP-1 cells and human peripheral blood monocytes, and also in HepG2 cells. Ceruloplasmin secreted by IFN-gamma-stimulated U937 cells had ferroxidase activity and was, in fact, the only secreted protein with this activity. Monocytic cell-derived ceruloplasmin may contribute to defense responses via its ferroxidase activity, which may drive iron homeostasis in a direction unfavorable to invasive organisms.  相似文献   

12.
PURPOSE: Cytosine arabinoside induces apoptosis and this cell death process is influenced by protein kinase C signaling events in leukemic cells. We present findings that extend these observations to include another deoxycytidine analog, gemcitabine, which is more potent in solid tumors. METHODS AND RESULTS: Gemcitabine induced programmed cell death in BG-1 human ovarian cancer cells based on biochemical and morphologic analyses. The DNA was fragmented in BG-1 cells exposed to gemcitabine (0.5 microM, 1.0 microM and 10 microM) for 8 h, but gemcitabine treatment did not induce internucleosomal DNA degradation. Scanning and transmission electron microscopy of BG-1 cells showed morphologic changes associated with apoptosis in response to gemcitabine: membrane blebbing, the formation of apoptotic bodies and chromatin condensation. Thus, BG-1 cells undergo programmed cell death in response to gemcitabine treatment without internucleosomal DNA fragmentation. Furthermore, gemcitabine (10 microM) activated protein kinase C in BG-1 cells and the phosphorylation of the endogenous protein kinase C substrate, myristoylated alanine-rich C kinase substrate, was increased following exposure of BG-1 cells to gemcitabine for up to 6 h. Clonogenicity studies with gemcitabine in combination with various protein kinase C-modulating agents demonstrated that gemcitabine cytotoxicity was influenced by protein kinase C signaling events in BG-1 cells. Short-term (1 h) exposure to TPA (1 or 10 nM) followed by gemcitabine (0.5 microM for 4 h) did not alter the response to gemcitabine. However, a 24-h exposure to TPA followed by gemcitabine resulted in synergistic cytotoxicity, while coincubation of TPA with a PKC inhibitor (e.g. bisindolylmaleimide or calphostin-C) in this regimen abrogated the synergistic response. CONCLUSIONS: Based on our findings, it is plausible that gemcitabine therapy could be improved by modulating PKC signaling events linked to drug-induced apoptosis/cytotoxicity.  相似文献   

13.
Accumulating evidence suggests that prothymosin alpha has an as yet undefined intracellular, perhaps intranuclear, function related to cell proliferation. Prothymosin alpha mRNA and/or peptide levels increase when cells are stimulated to proliferate. Because proliferation and differentiation events are often inversely correlated, we examined prothymosin alpha gene expression during proliferation and differentiation of HL-60 myeloid leukemia cells. Steady-state levels of prothymosin alpha mRNA, which are high in exponentially growing HL-60, decrease within hours after induction of HL-60 to differentiate along the neutrophil pathway with dimethylsulfoxide (DMSO) or along the macrophage lineage with either tetradecanoylphorbol acetate (TPA) or bryostatin 1. The decline in prothymosin alpha mRNA in response to these differentiation signals parallels that of c-myc mRNA under the same conditions. We then determined whether the downregulation of prothymosin alpha and c-myc mRNA were due to differentiation or cessation or proliferation. Recombinant human gamma-interferon induces monocytic differentiation of HL-60, but permits continued proliferation, and, under these conditions, expression of prothymosin alpha, as well as of c-myc, mRNA remains elevated. We conclude that prothymosin alpha and c-myc expression are coregulated in differentiating HL-60 and that their expression correlates with the proliferative state of HL-60 cells, rather than with the differentiated state.  相似文献   

14.
We have shown previously that protein kinase A (PKA) subunit levels are regulated by activation of PKA or protein kinase C (PKC) in anterior pituitary cells. GnRH also influenced PKA subunit levels, suggesting that hormonal regulation occurs in gonadotrophs, and therefore, we have reexamined this question using the clonal gonadotrope-derived cell line (alphaT3-1 cells). Western blot analysis, using specific immunoaffinity purified immunoglobulins, revealed expression of catalytic (Cat) and regulatory type I (RI) and type II (RII) subunits of PKA in these cells. Activation of adenylyl cyclase (AC) with forskolin, or of PKC with tetradecanoyl phorbol acetate (TPA), caused a rapid (detectable at 0.5-1 h) and concentration-dependent loss of all PKA subunits. Forskolin (10-100 microM) reduced Cat and RI by 60% and RII by 30%, whereas TPA (0.1-1 microM) reduced Cat and RII by 50% and RI by 40%. Simultaneous activation of PKA and PKC caused the expected dose-dependent reductions in Cat, and the effects of forskolin or TPA were nearly additive. RI and RII were reduced similarly by 10 nM TPA, whereas 100 nM TPA tended to prevent the reduction of RI or RII caused by forskolin. GnRH, which activates phosphoinositidase C and not AC in these cells, caused a clear loss of Cat or RII at all concentrations tested and of RI at 0.1 nM. Pituitary adenylate cyclase-activating polypeptide 38, which acts via PVR-1 receptors to stimulate both phosphoinositidase C and AC in these cells, also caused a clear dose-dependent decrease in Cat, RI, and RII, although higher concentrations were needed for the latter effects. Together, the data demonstrate that catalytic and regulatory subunits of PKA are subject to both hormonal and receptor-independent regulation in alphaT3-1 cells, reinforcing the possibility that such effects occur in nonimmortalized gonadotropes. Whereas the effects of PKA activators very likely involve proteolytic degradation of the dissociated PKA holoenzyme, the effects of TPA and GnRH occur in the absence of cAMP elevation by unknown mechanisms. Whatever the mechanisms involved, the data reveal a mechanism for cross-talk between phosphoinositidase C and AC-mediated hormonal signals, in which PKC activation seems to play a pivotal role.  相似文献   

15.
Bistratene A is a polyether which was isolated from the marine ascidian Lissoclinum bistratum Sluiter. The hypothesis has been tested that the cytostatic effect of bistratene A is mediated by modulation of protein kinase C (PKC). Human-derived A549 lung and MCF-7 breast adenocarcinoma cells are extremely sensitive to growth inhibition induced by activators of PKC. Therefore, the effect of bistratene A on these cell lines was compared with that of the known PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA). The ability of bistratene A to modulate PKC activity in cellular cytosol was assessed to determine the involvement of PKC in the induction of cytostasis. Bistratene A inhibited the growth of both cell lines and initial seeding density determined its cytostatic potency. IC50 values were between 1.0 and 2.9 nM. Bistratene A also had a profound effect on the colony forming ability of A549 cells, preventing clonal growth at 5 nM. Using the incorporation of [3H]thymidine into cells to assess DNA synthetic activity and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to define cytotoxicity, the compound was found to have both cytostatic and cytotoxic properties. Bistratene A decomposed by 50% after only 2.8 hr in cell culture medium. TPA induced rapid motility and the formation of a network of branched colonies in both cell lines grown on Matrigel, whereas bistratene A did not cause the same effect. Cell cytosol was analysed for phorbol ester binding sites after treatment with bistratene A or TPA. Incubation with TPA (10 nM) caused a reduction in binding sites to 57% of binding in control cells after 30 min and to 35% after 24 hr. Bistratene A did not cause a significant change in binding sites. Assays of PKC activity in cellular cytosol revealed that bistratene A was unable to activate or inhibit the enzyme at concentrations of up to 10 microM. The results suggest that bistratene A is an exquisitely potent cytostatic agent in the two cell lines studied, but modulation of PKC is not involved in the mode of action by which it elicits this effect.  相似文献   

16.
Inflamed synovium is characterized by high concentrations of cytokines [interleukin (IL)-6, IL-1beta and tumour necrosis factor (TNF)-alpha] and the abundant presence of infiltrated monocytes, many of which are found adjacent to the resident fibroblast-like synoviocytes. We have used a co-culture of fibroblast-like synoviocytes and differentiated U937 cells to study IL-6, IL-1beta and TNF-alpha release. After a 3 day co-culture, 35% of the U937 cells had adhered and were fully differentiated towards monocytes, as determined by expression of p47phox, CD14, MSE-1, Mac-1, collagenase and NADPH oxidase activity. IL-6 release from fibroblast-like synoviocytes was induced 4-fold by co-culture with differentiated U937 cells. However, co-culture of differentiated U937 cells with fibroblast-like synoviocytes failed to release detectable levels of IL-1beta and TNF-alpha from the U937 cells. Addition of synovial fluid further increased IL-6 release, but again had no effect on IL-1beta or TNF-alpha, although U937 cells differentiated by phorbol ester were able to release these two cytokines and, in the case of the co-culture, mRNAs for both cytokines were highly expressed in the U937 cells. We postulate that the influx of monocytes into the synovium is instrumental in the elevation of IL-6 levels, but this is not sufficient to explain high levels of IL-1beta or TNF-alpha.  相似文献   

17.
The aim of this study was to investigate the mechanism by which short-term pretreatment with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA; 100 nM) enhances noradrenaline (NA) release from the human neuroblastoma cell line SH-SY5Y. Subcellular fractionation and immunocytochemical studies demonstrated that an 8-min TPA treatment caused translocation of the alpha-subtype of protein kinase C (PKC) from the cytosol to the plasma membrane. In contrast, TPA altered the distribution of PKC-epsilon from cytosolic and membrane-associated to cytoskeleton- and membrane-associated. TPA had no effect on the cytosolic location of PKC-zeta. Subcellular fractionation studies also showed that the myristoylated alanine-rich C-kinase substrate (MARCKS), a major neuronal PKC substrate that has been implicated in the mechanism of neurotransmitter release, translocated from membranes to cytosol in response to an 8-min TPA treatment. Under these conditions the level of phosphorylation of MARCKS increased threefold. The ability of TPA to enhance NA release and to cause the translocation and phosphorylation of MARCKS was inhibited by the PKC inhibitor Ro 31-8220 (10 microM). Selective down-regulation of PKC subtypes by prolonged exposure to phorbol 12,13-dibutyrate (100 nM) attenuated the TPA-induced enhancement of NA release and the translocation of MARCKS over an interval similar to that of down-regulation of PKC-alpha (but not -epsilon or -zeta). Thus, we have demonstrated a strong correlation between the translocation of MARCKS and the enhancement of NA release from SH-SY5Y cells due to the TPA-induced activation of PKC-alpha.  相似文献   

18.
Protein kinase C (PKC) activators, such as the tumor-promoting phorbol esters, have been reported to protect several cell lines from apoptosis induced by a variety of agents. Recent evidence suggests that PKCepsilon is involved in protection of cardiac myocytes from hypoxia-induced cell death (Gray, M. O., Karliner, J. S., and Mochly-Rosen, D. (1997) J. Biol. Chem. 272, 30945-30951). We investigated the protective effects of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on U937 histiocytic lymphoma cells induced to undergo apoptosis by tumor necrosis factor-alpha (TNF-alpha) or by the specific PKC inhibitor calphostin C. U937 cells were transiently permeabilized with a peptide (epsilonV1-2) derived from the V1 region of PKCepsilon that has been reported to specifically block translocation of PKCepsilon. The epsilonV1-2 peptide blocked the inhibitory effect of TPA on both TNF-alpha- and calphostin C-induced apoptosis. A scrambled version of epsilonV1-2 and a peptide reported to inhibit PKCbeta translocation (betaC2-4) had no effect on the ability of TPA to inhibit apoptosis. These results suggest that PKCepsilon is required for the protective effect of TPA in TNF-alpha- and calphostin C-induced apoptosis. Furthermore, calphostin C reduced membrane-associated PKCepsilon activity and immunoreactivity, suggesting that PKCepsilon may play an important role in leukemic cell survival.  相似文献   

19.
Protein kinase C (PKC), the major receptor for tumor-promoting phorbol esters, consists of a family of at least 12 distinct lipid-regulated enzymes. We examined the expression and regulation of PKC isoforms in human saphenous vein endothelial cells (HSVEC). Western blot analysis with PKC isoform-specific antibodies indicated that PKC alpha, PKC epsilon and PKC zeta were expressed in these cells. Translocation and down-regulation of PKC alpha and epsilon but not zeta were detected by short-term and long-term treatment with TPA (12-O-tetradecanoylphorbol 13-acetate), respectively. Tumor necrosis factor-alpha (TNF-alpha 1,600 U/ml) and platelet activating factor (PAF 50 nM) increased the membrane content of PKC alpha and epsilon but not zeta. H2O2 (10 mM) induced the translocation of PKC alpha from the cytosol to the membrane and increased PKC epsilon content in both cytosol and membrane. However, 12-(S)-HETE (12-hydroxyeicosatetraenoic acid) (100 nM), a lipoxygenase metabolite of arachidonic acid, did not affect the two isoforms. These results suggest that the molecular action of TNF-alpha, PAF, and H2O2 in HSVEC might occur through PKC alpha and epsilon activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号