首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maximum-likelihood and minimum-distance estimates were compared for the three-parameter Weibull distribution. Six estimation techniques were developed by using combinations of maximum-likelihood and minimum-distance estimation. The minimum-distance estimates were made using both the Anderson-Darling and Cramer-Von Mises goodness-of-fit statistics. The estimators were tested by Monte Carlo simulation. For each set of parameters and sample size, 1000 data sets were generated and evaluated. Five evaluation criteria were calculated; they measured both the precision of estimating the population parameters and the discrepancy between the estimated and population Cdfs. The robustness of the estimation techniques was tested by fitting Weibull Cdfs to data from other distributions. Whether the data were Weibull or generated from other distributions, minimum-distance estimation using the Anderson-Darling goodness-of-fit statistic on the location parameter and maximum likelihood on the shape and scale parameters was the best or close to the best estimation technique  相似文献   

2.
On estimating parameters in a discrete Weibull distribution   总被引:1,自引:0,他引:1  
Two discrete Weibull distributions are discussed, and a simple method is presented to estimate the parameters for one of them. Simulation results are given to compare this method with the method of moments. The estimates obtained by the two methods appear to have almost similar properties. The discrete Weibull data arise in reliability problems when the observed variable is discrete. The modeling of such a random phenomenon has already been accomplished. Estimation of parameters in these models is considered. Since the usual methods of estimation are not easy to apply, a simple method is suggested to estimate the unknown parameters. The estimates obtained by this method are comparable to those obtained by the method of moments. The method can be applied in most inferential problems. Though the authors have restricted themselves to type I distribution, their method of proportions for the estimation of parameters can be easily applied to the type II distribution as well  相似文献   

3.
Four functions of the maximum likelihood estimates of the Weibull shape parameter and any Weibull percentile are found. The sampling distributions are independent of the population parameters and depend only upon sample size and the degree of (Type II) censoring. These distributions, once determined by Monte Carlo methods, permit the testing of the following hypotheses: 1) that the Weibull shape parameter is equal to a specified value; 2) that a Weibull percentile is equal to a specified value; 3) that the shape parameters of two Weibull populations are equal; and 4) that a specified percentile of two Weibull populations are equal given that the shape parameters are. The OC curves of the various tests are shown to be readily computed. A by-product of the determination of the distribution of the four functions are the factors required for median unbiased estimation of 1) the Weibull shape parameter, 2) a Weibull percentile, 3) the ratio of shape parameters of two Weibull distributions, and 4) the ratio of a specified percentile of two Weibull distributions.  相似文献   

4.
A new model for step-stress testing   总被引:1,自引:0,他引:1  
The mathematical intractability of the Weibull cumulative exposure model (CE-M) has impeded the development of statistical procedures for step-stress accelerated life tests. Our new model (KH-M) is based on a time transformation of the exponential CE-M. The time-transformation enables the reliability engineer to use known results for multiple-step, multiple-stress models that have been developed for the exponential step-stress model. KH-M has a realistically appealing proportional-hazard property. It is as flexible as the Weibull CE-M for fitting data, but its mathematical form makes it easier to obtain parameter estimates and standard deviations. Maximum likelihood estimates are given for test plans with unknown shape parameter. The mathematical similarity to the constant-stress Weibull model is shown. Chi-square goodness of fit tests are performed on simulated data to compare the fit of the models  相似文献   

5.
We present a simple statistic, calculated from either complete failure data or from right-censored data of type-I or -II. It is useful for understanding the behavior of the parameter maximum likelihood estimates (MLE) of a 2-parameter Weibull distribution. The statistic is based on the logarithms of the failure data and can be interpreted as a measure of variation in the data. This statistic provides: (a) simple lower bounds on the parameter MLE, and (b) a quick approximation for parameter estimates that can serve as starting points for iterative MLE routines; it can be used to show that the MLE for the 2-parameter Weibull distribution are unique  相似文献   

6.
MLE techniques are presented for estimating time-to-failure distributions from interval-data. Interval-data consist of adjacent inspection times that surround an unknown failure time. Censored interval-data bound the unknown failure time with only a lower time. The 2-parameter Weibull distribution is examined as the failure distribution. Parameter estimates from interval-data and from the midpoints of the intervals are compared for 6 shapes of the Weibull distribution. The results from Monte Carlo simulation runs are used to examine the s-bias and S-variability of the parameter estimates.  相似文献   

7.
The Weibull distribution, frequently employed to assign probabilities to the lifetimes of components and systems operating under stress, is habitually characterized by a pair of positive parameters, termed the scale and shape parameters. Two fundamental reparameterizations of the Weibull probability density function are proposed. The first reparameterization replaces the shape parameter by its inverse, the resulting positive parameter thereafter termed the shaping parameter. This permits a more facile exposition of the properties of parameter estimates, derived in the event that a complete random sample from the Weibull distribution is available. The characteristics of these parameter estimation techniques are then reviewed and compared, and their variances and distributional properties are delineated whenever possible. A second reparameterization extends the parameter space so as to include nonpositive values of the shape parameter. This extension augments the utility and applicability of the Weibull distribution without requiring radical alteration of the standard parameter estimation procedures applicable to the original parameter space.  相似文献   

8.
This paper derives a one-order statistic estimator ?mn b for the location parameter of the (first) extreme-value distribution of smallest values with cumulative distribution function F(x;u,b) = 1 - exp {-exp[(x-u)/b]} using the minimum-variance unbiased one-order statistic estimator for the scale parameter of an exponential distribution, as was done in an earlier paper for the scale parameter of a Weibull distribution. It is shown that exact confidence bounds, based on one-order statistic, can be easily derived for the location parameter of the extreme-value distribution and for the scale parameter of the Weibull distribution, using exact confidence bounds for the scale parameter of the exponential distribution. The estimator for u is shown to be b ln cmn + xmn, where xmn is the mth order statistic from an ordered sample of size n from the extreme-value distribution with scale parameter b and Cmn is the coefficient for a one-order statistic estimator of the scale parameter of an exponential distribution. Values of the factor cmn, which have previously viously been tabulated for n = 1(1)20, are given for n = 21(1)40. The ratios of the mean-square-errors of the maximum-likelihood estimators based on m order statistics to those of the one-order statistic estimators for the location parameter of the extreme-value distribution and the scale parameter of the Weibull distribution are investigated by Monte Carlo methods. The use of the table and related tables is discussed and illustrated by numerical examples.  相似文献   

9.
The response variable in an experiment follows a 2-parameter Weibull distribution having a scale parameter that varies inversely with a power of a deterministic, externally controlled, variable generically termed a stress. The shape parameter is invariant with stress. A numerical scheme is given for solving a pair of nonlinear simultaneous equations for the maximum likelihood (ML) estimates of the common shape parameter and the stress-life exponent. Interval and median unbiased point estimates for the shape parameter, stress-life exponent and a specified percentile at any stress, are expressed in terms of percentage points of the sampling distributions of pivotal functions of the ML estimates. A numerical example is given.  相似文献   

10.
Existing results are reviewed for the maximum likelihood (ML) estimation of the parameters of a 2-parameter Weibull life distribution for the case where the data are censored by failures due to an arbitrary number of independent 2-parameter Weibull failure modes. For the case where all distributions have a common but unknown shape parameter the joint ML estimators are derived for i) a general percentile of the j-th distribution, ii) the common shape parameter, and iii) the proportion of failures due to failure mode j. Exact interval estimates of the common shape parameter are constructable in terms of the ML estimates obtained by using i) the data without regard to failure mode, and ii) existing tables of the percentage points of a certain pivotal function. Exact interval estimates for a general percentile of failure-mode-j distribution are calculable when the failure proportion due to failure-mode-j is known; otherwise a joint s-confidence region for the percentile and failure proportion is calculable. It is shown that sudden death endurance test results can be analyzed as a special case of competing-mode censoring. Tabular values for the construction of interval estimates for the 10-th percentile of the failure-mode-j distribution are given for 17 combinations of sample size (from 5 to 30) and number of failures.  相似文献   

11.
对于威布尔分布无故障数据可靠性评估方法中形状参数已知和未知的两种方法,通过一个例子进行对比分析,指出当形状参数毫无所知时,所得到的基本可靠度置信下限估计最为保守。通过相似产品的信息和工程经验对形状参数作出一个较为精确的估计是可行的。  相似文献   

12.
Two problems are considered: 1) testing the hypothesis that the shape parameters of k 2-parameter Weibull populations are equal, given a sample of n observations censored (Type II) at r failures, from each population; and 2) Under the assumption of equal shape parameters, the problem of testing the equality of the p-th percentiles. Test statistics (for these hypotheses), which are simple functions of the maximum likelihood estimates, follow distributions that depend only upon r,n,k,p and not upon the Weibull parameters. Critical values of the test statistics found by Monte Carlo sampling are given for selected values of r,n,k,p. An expression is found and evaluated numerically for the exact distribution of the ratio of the largest to smallest maximum likelihood estimates of the Weibull shape parameter in k samples of size n, Type II censored at r = 2. The asymptotic behavior of this distribution for large n is also found.  相似文献   

13.
Relatively simple approaches to estimating Weibull parameters for a general class of devices are developed through regression models. It is assumed that data are collected on a number of device types belonging to a general class. For each device type, the only information available is the number of devices being observed, the total time observed and the total number of failures. By assuming a constant shape parameter and a scale parameter that may vary with the characteristics of the device-type, the least squares method is used to provide estimates of the parameters of a two-parameter Weibull distribution for both replacement and nonreplacement data. An approach is also suggested for dealing with troublesome cases of zero failure occurrences. A numerical example is provided to illustrate the approach.  相似文献   

14.
Best linear unbiased estimates (BLUEs) based on a few order statistics are found for the location and scale parameters of the extreme-value distribution (Type-I asymptotic distribution of smallest values), when one or both parameters are unknown, such that the estimates have maximum efficiencies among the BLUEs based on the same number of order statistics. These estimates are then compared with the BLUEs and asymptotically best linear estimates (ABLEs) based on a few order statistics whose ranks were determined from the spacings that maximize the asymptotic efficiencies of the ABLEs. An application to the Weibull distribution is given.  相似文献   

15.
The conventional techniques of linear regression analysis (linear least squares) applied to the 3-parameter Weibull distribution are extended (not modified), and new techniques are developed for the 3-parameter Weibull distribution. The three pragmatic estimation methods in this paper are simple, accurate, flexible, and powerful in dealing with difficult problems such as estimates of the 3 parameters becoming nonpositive. In addition, the inherent disadvantages of the 3-parameter Weibull distribution are revealed; the advantages of a new 3-parameter Weibull-like distribution over the original Weibull distribution are explored; and the potential of a 4-parameter Weibull-like distribution is briefly mentioned. This paper demonstrates how a general linear regression analysis or linear least-squares breaks away from the classical or modern nonlinear regression analysis or nonlinear least-squares. By adding a parameter to the simplest 2-parameter linear regression model (AB-model), two kinds of ABC models (elementary 3-parameter nonlinear regression models) are found, and then a 4-parameter AABC model is built as an example of multi-parameter nonlinear regression models. Although some other techniques are still necessary, additional applications of the ABC models are strongly implied  相似文献   

16.
The location, shape, and scale parameters of the Weibull distribution are estimated from Type I progressively censored samples by the method of maximum likelihood. Nonlinear logarithmic likelihood estimating equations are derived, and the approximate asymptotic variance-covariance matrix for the maximum likelihood parameter estimates is given. The iterative procedure to solve the likelihood equations is a stable and rapidly convergent constrained modified quasilinearization algorithm which is applicable to the general case in which all three parameters are unknown. The numerical results indicate that, in terms of the number of iterations required for convergence and in the accuracy of the solution, the proposed algorithm is a very effective technique for solving systems of logarithmic likelihood equations for which all iterative approximations to the solution vector must satisfy certain intrinsic constraints on the parameters. A FORTRAN IV program implementing the maximum likelihood estimation procedure is included.  相似文献   

17.
Many methods for estimating the parameter and percentile statistical confidence intervals for the Weibull and Gumbel (extreme value) distributions have been described in the literature. Most of these methods depend on extensive computer programs, require reference to tables which do not cover all sample sizes of interest and/or are not widely available. This paper describes a semi-empirical technique which permits rapid estimation of the 2-sided 90% statistical confidence intervals for the Weibull or Gumbel distribution parameters, as well as for the 1, 5, 10 percentiles. The estimates can be obtained for type II censoring and sample sizes to 25. The statistical confidence intervals calculated using this method are not exact, but are very good approximations and are useful to engineers who do not have ready access to programs or lengthy tables, or who require quick estimates. If more accurate statistical confidence intervals are required, then the more complicated methods described in the references should be used.  相似文献   

18.
This paper makes three points about possible perils of unguarded fitting of Weibull distributions to data: (1) bias is introduced by incomplete data, which may have counter-intuitive effects; (2) bias is introduced into percentile estimates by using regression on log-transformed variables to fit the Weibull parameters, particularly if the percentile to be predicted lies outside the range of the data; and (3) the amount of variation associated with such estimates can be very substantial. A partial solution to the incomplete data problem using simulation is presented, and the maximum likelihood approach to parameter estimation and its advantages relative to regression estimation are explained. The problem arose in predicting life expectancy of long-lived components subject to natural aging which cannot be investigated using accelerated testing and for which the collection of data provides an incomplete life record  相似文献   

19.
This paper calculates the minimum-variance unbiased one-order-statistic estimator of the parameter of a one-parameter exponential population. The estimator is given for N = 2(1)20 along with its efficiency with respect to an unbiased M-order-statistic estimator for a sample of N items which is truncated after M items have failed. Furthermore, it is shown that by using the estimator for exponential populations one can obtain a consistent estimator for the scale parameter of Weibull populations with any known shape parameter and with ## location parameter zero. A section on the use of the tabled data and a numerical example are included.  相似文献   

20.
Two life testing procedures, namely, the progressively censored samples and Bartholomew's experiment are discussed under the assumption that the life of an item follows a specialized Weibull distribution. The scale parameter is different under two different conditions of usage of the item at regular intervals of time, the shape parameter remains unchanged throughout the experiment. The maximum likelihood estimates of the two scale parameters have been derived along with their variances. A numerical example illustrates the type of data and relevant calculations for the experiment involving progressively censored samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号