首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用聚乙二醇(PEG)、聚丁二酸丁二醇酯(PBS)对聚乳酸(PLA)/剑麻纤维(SF)复合材料进行增韧改性,PLA/SF复合体系与增韧剂PEG、PBS密炼共混后,经模压制备PL/A/SF纤维复合材料.通过正交实验,考察PEG含量、PBS含量、硬脂酸含量以及密炼温度对复合材料力学性能的影响.结果表明:PEG的含量对复合材料韧性的影响最显著.PBS的含量和硬脂酸的含量对复合材料冲击性能的影响比较显著,但对其断裂伸长率和拉伸强度的影响不显著.温度对复合材料的冲击性能和拉伸强度几乎没影响,但对其断裂伸长率的影响比较显著.  相似文献   

2.
通过熔融共混法制备了一系列不同质量比的PLA/PBS复合材料,研究了不同比例的PBS对PLA的增韧效果,结果发现:加入PBS后,PLA的断裂伸长率和冲击强度都有了明显的提高。PLA与PBS的最佳配比为80/20,断裂伸长率高达428. 04%,冲击强度也由纯PLA的1. 74 k J/m2上升至3. 57 k J/m2。固定PLA/PBS的质量比为80/20,加入不同质量分数的相容剂苯乙烯-甲基丙烯酸缩水甘油酯(ADR)研究ADR对PLA/PBS复合材料增容改性的影响,结果显示:ADR的加入提高了PLA/PBS复合材料的相容性,从而使PLA/PBS复合材料的力学性能也进一步提高。当ADR含量为0. 75%时,其断裂伸长率最大,数值为535. 18%。同时,PLA/PBS复合材料的热稳定性能也更好。  相似文献   

3.
聚乳酸增韧改性研究   总被引:3,自引:1,他引:2  
采用熔融共混法,将聚乳酸(PLA)分别与丁二醇-己二酸-对苯二甲酸共聚物(PBAT)、聚丁二酸丁二醇酯(PBS)及聚甲基乙撑碳酸酯(PPC)共混制备生物降解复合材料,并模压成型。研究了3种复合材料的拉伸性能、冲击性能及断面微观形貌。结果表明:PBAT、PBS和PPC均能提高PLA的断裂伸长率和冲击强度;与PBS和PPC相比,PBAT与PLA的相容性更好;随着PBAT含量的增加,增韧PLA材料的冲击强度逐渐上升,但PBAT与PLA的相容性逐渐变差。  相似文献   

4.
许佳怡 《中国塑料》2021,35(5):59-64
选用羟丙甲纤维素(HMC)对聚乳酸(PLA)进行增韧改性,采用共混法制备了PLA/HMC复合材料,并对其流变性能、力学性能和结晶性能进行了系统分析。结果表明,PLA/HMC复合材料的表观黏度随剪切速率、温度和HMC含量的增加呈现逐渐下降的趋势;HMC在PLA基体中能够均匀分散,且PLA与HMC之间具有较好的相容性;PLA/HMC复合材料的断裂伸长率和冲击强度均在HMC含量为10 %(质量分数,下同)时达到最大值,HMC对PLA起到了增韧的效果;而PLA/HMC复合材料的拉伸强度则随着HMC含量的增加而逐渐下降;HMC降低了PLA/HMC复合材料的结晶性能,复合材料的熔点和结晶度均随着HMC含量的增加而逐渐下降。  相似文献   

5.
在配比为9:1的P3/4HB/PBS共混物体系中添加不同比例的接枝剂—马来酸苷(MAH)制得P3/4HB/PBS/MAH改性材料.MAH含量为0.7%时复合材料的拉伸强度增强20%,断裂伸长率增大了425%,杨氏模量也较小,MAH的添加增强了P3/4HB/PBS的机械性能.MAH含量为0.7%时复合材料水接触角最大,水...  相似文献   

6.
以聚碳酸丁二醇酯(PBC)为增韧剂,采用熔融共混法对聚乳酸进行改性,研究其对聚乳酸(PLA)力学性能的影响。并考察了PBC与聚丁二酸-1,4-丁二醇酯(PBS)和乙酰基柠檬酸三正丁酯(ATBC)复配增韧PLA,及其中PBC含量对体系性能影响。同时对比了加入丙烯酸酯类(ACR)型抗冲改性剂对体系性能影响。结果表明:PBC对PLA有较好的增韧效果,PBC与PBS、ATBC复配增韧PLA的效果更佳,其中PBC含量为7%时体系韧性较好,断裂伸长率达200.9%,提高近5倍。ATBC含量为3%时,PLA/PBC体系力学性能最佳;丙烯酸酯类增韧剂UF100可以很好地改善共混体系的韧性,体系的冲击强度及断裂伸长率随UF100含量的增加而增大。  相似文献   

7.
采用熔融插层法制备聚乳酸( PLA)/未粉(WF)/季膦盐改性蒙脱土(P-MMT)纳米复合材料并进行了表征.结果表明,随着WF含量的增加,PLA/WF/P-MMT纳米复合材料的拉伸弹性模量增加,但其断裂伸长率、拉伸强度和缺口冲击强度均会下降.当P-MMT质量分数为5.0%时纳米复合材料的综合性能最优,其质量损失10.0...  相似文献   

8.
《塑料科技》2015,(10):73-76
采用熔融共混法,以聚(3-羟基丁酸-co-3-羟基戊酸酯)(PHBV)为增韧剂对聚乳酸(PLA)进行改性,得到PLA/PHBV复合材料。研究了PHBV用量对PLA/PHBV复合材料结晶性能和力学性能的影响。结果表明:随着PHBV用量的增加,PLA/PHBV复合材料的结晶度逐渐减小,拉伸强度和弯曲强度逐渐降低,而断裂伸长率则逐渐增大(当PHBV用量为50%时,复合材料的断裂伸长率比纯PLA提高了1.72倍),同时复合材料的冲击强度亦有所提高。由此可见,在不明显降低拉伸强度和弯曲强度的前提下,适量PHBV的添加能够改善PLA/PHBV复合材料的韧性。  相似文献   

9.
通过在天然橡胶(NR)分子链上接枝甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA),制备了三种丙烯酸酯接枝改性NR:NR-g-PMMA,NR-g-PBA和NR-g-(PMMA,PBA)。采用核磁共振氢谱对三种接枝物进行了化学结构鉴定。将接枝改性后的NR和未改性的NR与PLA采用哈克密炼机熔融共混,分别制备了PLA/NR,PLA/NR-gPMMA,PLA/NR-g-PBA和PLA/NR-g-(PMMA,PBA)共混物,研究了接枝改性NR和未改性NR含量对共混物力学性能和热性能的影响。各共混物的拉伸弹性模量和拉伸强度均随接枝改性NR和未改性NR含量的增加而降低,断裂伸长率和缺口冲击强度随接枝改性NR和未改性NR含量的增加而提高。其中,PLA/NR-g-PBA共混物的断裂伸长率和缺口冲击强度比其它共混物提高的幅度大,当NR-g-PBA的质量分数为5%时,PLA/NR-g-PBA共混物的断裂伸长率达到78%,缺口冲击强度为5.2 k J/m2,而纯PLA的断裂伸长率仅为7.7%,缺口冲击强度为2.5 k J/m2,说明NR接枝分子柔顺性较高的BA更有利于促进其与PLA共混物的韧性提高。热分析结果表明,PLA/NR-gPBA共混物的热稳定性相比于纯PLA也有所提高。  相似文献   

10.
以马来酸酐(MAH)为交联剂,将回收纤维素二醋酸酯(CDA)与聚丁二酸丁二醇酯(PBS)共混制备CDA/PBS复合材料。分别通过红外光谱(FTIR)、差示扫描量热仪(DSC)和扫描电镜(SEM)表征了复合材料的结构、性能和形貌,测定了复合材料的力学性能。结果表明,CDA与PBS质量比为9/1,CDA/PBS复合材料的力学性能与PBS相当。MAH含量为2%,CDA/PBS复合材料的断裂伸长率和冲击强度达到68.23%和47.70 kJ/m~2,为纯PBS的2.1和3.1倍。CDA/PBS复合材料将是一种价廉的可完全生物降解塑料。  相似文献   

11.
为了提高聚乳酸(PLA)的韧性,采用聚丙烯酸甲酯-甲基丙烯酸甲酯(PMA-MMA)对PLA进行共混改性。采用悬浮聚合法,以丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)为共聚单体,制备珠粒状的PMA-MMA共聚物。通过熔融共混法,分别以PMA-MMA共聚物为增韧剂,聚乙二醇为增塑剂,聚乙烯蜡为润滑剂,对PLA进行改性,对改性后的PLA复合材料的热性能和力学性能进行研究。结果表明,随着PMA-MMA共聚物用量的增加,PLA复合材料的拉伸强度呈先增大后减小的趋势,而断裂伸长率和冲击强度不断增大。当PMA-MMA共聚物用量为15份时,PLA复合材料的拉伸强度达到最大值,为52.2 MPa;当PMA-MMA共聚物用量为25份时,PLA复合材料冲击强度为53.26 k J/m2,是纯PLA的4.4倍,断裂伸长率为54.9%。PMA-MMA共聚物与PLA的相容性好,有明显的增韧作用。PMA-MMA共聚物的加入并未降低PLA复合材料的热性能。  相似文献   

12.
采用熔融接枝技术将马来酸酐(MAH)接枝到聚乳酸(PLA)上,制备不同MAH含量的PLA-g-MAH接枝共聚物,将聚碳酸亚丙酯(PPC)、PLA、PLA-g-MAH熔融共混,制备PPC/PLA/PLA-g-MAH共混物,分析接枝物中MAH含量对PPC/PLA/PLA-g-MAH共混体系的热学性能以及力学性能的影响。结果表明:PLA-g-MAH可以改善PPC与PLA二者的相容性,使PLA在降温过程中更容易结晶。引入接枝物后,共混物的起始分解温度及完全分解温度分别提高30℃和60℃。共混物的力学性能随着接枝物中MAH含量的增加呈现先增加后减小的趋势,当MAH的加入量为3%,共混体系力学性能最佳,冲击断面塑性形变程度更加显著,呈现褶皱状韧性断裂特征,拉伸强度达到42.8 MPa,断裂伸长率为120%左右,同时冲击强度最大。  相似文献   

13.
将高强度、高模量的聚乳酸(PLA)与高韧性的聚对苯二甲酸-己二酸-丁二醇酯(PBAT)共混制备复合材料时,界面相容性较差,综合力学性能不高。采用马来酸酐(MAH)、2,2′-(1,3-亚苯基)二噁唑啉(BOZ)作为增容剂,通过反应性增容提高PLA/PBAT体系的相容性,探讨了MAH和BOZ的最佳用量。并通过力学性能测试、傅里叶红外光谱、差示扫描量热法、熔体质量流动速率测定,印证和对比MAH、BOZ对PLA/PBAT体系的增容效果。结果表明,MAH和BOZ与PLA/PBAT发生了化学反应,增加了PLA与PBAT之间的相互作用,提高了复合材料的综合力学性能,与PLA/PBAT相比,增容改性后复合材料拉伸、冲击强度、断裂伸长率最高分别提高了13.72%、139.67%、122.12%。增容改性使分子间相互作用增强,结晶度和熔点最多分别降低了10.87%和2.8℃。改性后熔体的流动性降低了,熔体质量流动速率最多降低了4.58 g/10min。综合比较,BOZ的增容效果优于MAH。  相似文献   

14.
制备了热塑性淀粉(TPS)/聚乳酸(PLA)生物降解复合材料,探讨了环氧大豆油(ESO)对复合材料断面形貌、热流率、生物降解性能以及物理性能的影响。结果表明:ESO的添加能够促进TPS塑化,提高TPS/PLA体系相容性能,使复合材料拉伸强度、断裂伸长率和冲击强度明显提高。其中,拉伸强度、冲击强度随ESO含量的增加先升高后降低,而断裂伸长率则单纯与ESO含量呈正相关关系。在ESO含量为6份时,复合材料拉伸强度从23.9 MPa提高到24.3 MPa,在ESO含量为8份时,复合材料冲击强度从5.9 kJ/m~2提高到7.2 kJ/m~2,在ESO含量为10份时,复合材料断裂伸长率从32%提高到98%。并且ESO含量的增加还能提高复合材料生物降解速率,在ESO含量为10份时,复合材料完全降解时间由240 d降至210 d,在ESO含量为4~6份时,复合材料具有良好的耐热、耐水和耐油性能。  相似文献   

15.
用液态丁腈橡胶(LNBR)对环氧树脂(EP)进行增韧改性,制备出LNBR/EP复合材料。通过对不同含量LNBR的环氧树脂复合材料力学性能测试,结果表明:当LNBR含量为20 phr时,复合材料冲击强度、拉伸强度和断裂伸长率达到23.6 KJ/m2、60.2 MPa和26.32%;利用SEM对复合材料分析得到LNBR增韧使环氧树脂从脆性断裂变为韧性断裂;利用差示扫描量热法对复合材料的热性能分析得到:随着LNBR份数增多,体系Tg温度逐渐降低。  相似文献   

16.
以聚丙烯(PP)为基体,聚乳酸(PLA)和纳米碳酸钙(CaCO_3)为增韧、增强组分,利用熔融共混制得PP/PLA/CaCO_3复合材料,通过对复合材料力学性能、耐热性能、流变性能与结晶形态的表征,研究了PLA和纳米CaCO_3对复合材料性能的影响及其机理。结果表明,当PP与PLA共混时,形成连续空间网络结构PLA有助于改善PP的性能,PLA质量分数为20%时综合力学性能最佳,与纯PP相比,PP/PLA复合材料的拉伸强度和缺口冲击强度分别提高5. 14%和54. 35%,断裂伸长率降低62. 47%。向PP基体中引入的纳米CaCO_3通过"滚珠增韧"和"异相成核"作用明显改善复合材料力学性能,纳米CaCO_3质量分数为15%时,在PP/PLA中均匀分散产生的晶粒细化作用效果最为显著,PP/PLA/CaCO_3复合材料的综合力学性能达到最佳,拉伸强度、断裂伸长率和缺口冲击强度分别比未添加CaCO_3时提高了15. 23%、2. 67%和5. 63%。  相似文献   

17.
针对聚乳酸(PLA)韧性差的特点,采用有机硅改性热塑性聚氨酯(TPSiU)对PLA通过熔融共混进行增韧改性,考察了TPSiU含量对PLA/TPSiU共混物微观结构、热性能及力学性能等的影响。研究结果表明,TPSiU的加入,使PLA由脆性材料转变为韧性材料,共混物的拉伸强度、弹性模量,冲击强度均随TPSiU含量的增加呈先增大后减小的趋势,当TPSiU的质量分数为20%时,PLA/TPSiU共混物的断裂伸长率提高约8倍。PLA/TPSiU共混物中两相呈海-岛结构,相容性欠佳,而且随着TPSiU含量的增加,"岛"相尺寸逐渐增大。另外,TPSiU的加入对PLA的热性能稍有影响,当TPSiU质量分数为10%时,共混体系的耐热性与纯PLA相当。  相似文献   

18.
将木质素改性聚醋酸乙烯酯(L-PVAc)与聚丁二酸丁二醇酯熔融共混,制得了L-PVAc/PBS复合材料。通过万能试验机、冲击试验机、 DSC、 TGA及SEM对复合材料的力学性能、热性能及断面形貌进行了分析与表征。结果表明:随着L-PVAc含量的增加, L-PVAc/PBS复合材料的冲击强度及剩余炭量逐渐上升,断裂伸长率逐渐下降,拉伸强度呈先下降后上升趋势,玻璃化转变温度(Tg)及熔融温度(Tm)基本无变化;当m(PBS)∶m(L-PVAc)=5∶1时,复合材料的冲击强度可达41.5 KJ·m-2,是纯PBS的164.7%。  相似文献   

19.
采用熔融共混法制备聚丁二酸丁二酯(PBS)/聚乳酸(PLA)共混物,研究PLA含量对共混物的熔体流动速率(MFR)、拉伸性能、微观形貌以及结晶结构的影响。结果表明,由于PLA熔体的较高黏度,导致PBS/PLA共混物的MFR随着PLA含量增大而显著降低。适量PLA的加入可实现其对PBS的增强增韧,当PLA质量分数为30%时,共混物的拉伸屈服强度、拉伸弹性模量以及断裂伸长率分别由纯PBS的32.0,473.1 MPa和282.5%增大至34.4,610.8 MPa和455.2%,拉伸性能最优。而当PLA质量分数增大至40%时,共混物中出现严重的PLA相合并,导致其断裂伸长率剧烈降低至11.3%。此外,结晶测试结果表明,共混物中PBS基体为半结晶结构,而PLA分散相为非晶态结构,PLA的加入会导致PBS结晶度降低。  相似文献   

20.
《塑料》2017,(5)
分别采用无机黏土(Clay)、十八烷基三甲基溴化铵(STAB)改性黏土(S-OC)以及十八烷基三甲基溴化铵(STAB)/十二烷基磺酸钠(SDS)复配改性黏土(SS-OC)填充聚乳酸(PLA)制得复合材料PLA/Clay、PLA/S-OC和PLA/SS-OC,通过拉伸性能测试和冲击性能测试,研究了黏土种类及含量对复合材料力学性能的影响。结果表明:PLA/SS-OC的力学性能(拉伸强度、断裂伸长率、冲击强度)均最优,随着SS-OC含量的增加,材料的力学性能先升高后下降,含量为2%时,性能最佳。通过X射线衍射(XRD)和扫描电子显微镜分析(SEM)发现,黏土改性后,晶层间距增大,在PLA基体中分散性提高,且SS-OC插层效果优于S-OC。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号