共查询到20条相似文献,搜索用时 31 毫秒
1.
针对移动边缘计算(MEC)中用户的卸载任务及卸载频率可能使用户被攻击者锁定的问题,该文提出一种基于k-匿名的隐私保护计算卸载方法。首先,该方法基于用户间卸载任务及其卸载频率的差异性,提出隐私约束并建立基于卸载频率的隐私保护计算卸载模型;然后,提出基于模拟退火的隐私保护计算卸载算法(PCOSA)求得最优的k-匿名分组结果和组内各任务的隐私约束频率;最后,在卸载过程中改变用户原始卸载频率满足隐私约束,最小化终端能耗。仿真结果表明,PCOSA算法能找出用户所处MEC节点下与用户卸载表现最相近的k个用户形成匿名集,有效保护了所有用户隐私。 相似文献
2.
3.
《无线互联科技》2016,(9)
随着社会的不断进步与信息化发展,数据库管理已经成为人类生活的重要组成部分,不仅方便了人们的生活,让繁杂的众多信息得到整理与管理。这不仅标志着人类走入信息华的网络时代,还标志着人类的文化的发展有更新的拓宽性发展。在进行数据库的管理中,越来越多的人开始注意数据管理的安全性与隐私保护等问题,这给数据库管的发展带来了助推的作用,在所有人类创造的事物中,无不都是为供应人们的生活的方便而创立出来的。而数据库的形式正是由于人们的需求而建立的,再由人们对其提出的宝贵意见或建议来推动信息化数据库的发展。从而使得人类更加进步。文章通过数据库的介绍以及基本的知识储备后,对数据库所存在的问题进行整理与归纳,然后进行分析根据分析提出合理化建议。 相似文献
4.
普适计算(Ubiquitous Computing)改变了人们的计算和联系方式,为研究者带来了方便与高效。但为了避免普适系统最终成为一个分布式监督系统,需要在系统设计的最初阶段就认真考虑用户的隐私问题。为此,这里将普适计算中的隐私问题划分为物理层、链路层和应用层这三层来解决,为系统设计者提供了灵活的隐私保护方案。 相似文献
5.
6.
7.
新一代人工智能技术的特征,表现为借助GPU计算、云计算等高性能分布式计算能力,使用以深度学习算法为代表的机器学习算法,在大数据上进行学习训练,来模拟、延伸和扩展人的智能。不同数据来源、不同的计算物理位置,使得目前的机器学习面临严重的隐私泄露问题,因此隐私保护机器学习(PPM)成为目前广受关注的研究领域。采用密码学工具来解决机器学习中的隐私问题,是隐私保护机器学习重要的技术。该文介绍隐私保护机器学习中常用的密码学工具,包括通用安全多方计算(SMPC)、隐私保护集合运算、同态加密(HE)等,以及应用它们来解决机器学习中数据整理、模型训练、模型测试、数据预测等各个阶段中存在的隐私保护问题的研究方法与研究现状。 相似文献
8.
移动边缘计算(MEC)中计算卸载决策可能暴露用户特征,导致用户被锁定。针对此问题,该文提出一种基于Lyapunov优化的隐私感知计算卸载方法。首先,该方法定义卸载任务中的隐私量,并引入隐私限制使各MEC节点上卸载任务的累积隐私量尽可能小;然后,提出假任务机制权衡终端能耗和隐私保护的关系,当系统因隐私限制无法正常执行计算卸载时,在MEC节点生成虚假的卸载任务以降低累积隐私量;最后,建立隐私感知计算卸载模型,并基于Lyapunov优化原理求解。仿真结果表明,基于Lyapunov优化的隐私感知卸载算法(LPOA)能使用户的累积隐私量稳定在0附近,且总卸载频率与不考虑隐私的决策一致,有效保护了用户隐私,同时保持了较低的平均能耗。
相似文献9.
10.
11.
12.
作为智能电网的基础组件,智能电表(SMS)可以定期向电力公司报告用户的详细用电量数据。但是智能电表也带来了一些安全问题,比如用户隐私泄露。该文提出了一种基于虚拟环的隐私保护方案,可以提供用电数据和用户身份的隐私,使攻击者无法知道匹配电力数据与用户身份的关系。在所提方案中,智能电表可以利用其虚拟环成员身份对其真实身份进行匿名化,并利用非对称加密和Paillier同态系统对其获得的用电量数据生成密文数据;然后智能电表将密文数据发送给其连接的雾节点,雾节点定期采集其管理的智能电表的密文数据。同时,雾节点对这些智能电表的虚拟环身份进行验证,然后将收集到的密文数据聚合并发送给控制中心;最后控制中心对聚合后的密文进行解密,得到用电量数据。实验结果表明所提方案在计算和通信成本上具有一定的优势。 相似文献
13.
随着移动互联网、云计算和大数据技术的广泛应用,电商、搜索、社交网络等服务在提供便利的同时,大数据分析使用户隐私泄露的威胁日益凸显,不同系统隐私保护策略和能力的差异性使隐私的延伸管理更加困难,同一信息的隐私保护需求随时间变化需要多种隐私保护方案的组合协同。目前已有的各类隐私保护方案大多针对单一场景,隐私缺乏定量化的定义,隐私保护的效果、隐私泄露的利益损失以及隐私保护方案融合的复杂性三者之间的关系刻画缺乏系统的计算模型。因此,在分析隐私保护研究现状的基础上,提出隐私计算的概念,对隐私计算的内涵加以界定,从隐私信息的全生命周期讨论隐私计算研究范畴,并从隐私计算模型、隐私保护场景适应的密码理论、隐私控制与抗大数据分析的隐私保护、基于信息隐藏的隐私保护以及支持高并发的隐私保护服务架构等方面展望隐私计算的发展趋势。 相似文献
14.
15.
16.
在基于位置服务的个性化搜索中,利用可信第三方服务器以及对等节点是保护用户隐私的主要方法,但在现实生活中,它们却是不完全可信的。为了解决这一问题,该文提出一种个性化搜索中基于位置服务的隐私保护方法。该方法通过转换用户的位置信息,并根据用户的查询类型生成用户模型,进而形成带有用户位置信息的查询矩阵,然后利用矩阵加密用户的查询,隐藏查询矩阵中的用户信息,最后根据安全内积计算返回相关性得分最高的前K个查询文件给用户。安全性分析表明该方法能有效地保护用户的查询隐私和位置隐私,通过分析与实验表明,该方法大幅度地缩短了索引构建时间,降低了通信开销,同时为用户提供了基于位置的个性化搜索结果,一定程度上解决了移动设备屏幕小带来的弊端。 相似文献
17.
基于高性能计算发展现状,提出了国家超算中心与隐私计算相结合的技术路线。通过对隐私计算进行分析,讨论了隐私计算与超算相结合的优势和不足。在此基础上,对高性能计算技术与隐私计算技术结合后的应用场景进行了展望。 相似文献
18.
19.
当前已经有研究将雾环境与联邦学习结合应用在车联网隐私保护中,但是缺乏对车辆移动性可能导致隐私需求改变的问题的考虑。为此,文中基于区域内车辆终端数目,提出了在不同的隐私需求下实施不同的隐私保护和效率调整的方案,在同态加密方案中进行双重加密聚合并且动态调整本地迭代次数,在差分隐私方案中动态调整每轮云聚合与雾聚合次数。实验表明,在区域内车辆终端数不同的情况下,本方案满足在隐私计算的同时保持较高精度。 相似文献
20.