首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Human residential population distributions show patterns of higher density clustering around local services such as shops and places of employment, displaying characteristic length scales; Fourier transforms and spatial autocorrelation show the length scale between UK cities is around 45 km. We use integro-differential equations to model the spatio-temporal dynamics of population and service density under the assumption that they benefit from spatial proximity, captured via spatial weight kernels. The system tends towards a well-mixed homogeneous state or a spatial pattern. Linear stability analysis around the homogeneous steady state predicts a modelled length-scale consistent with that observed in the data. Moreover, we show that spatial instability occurs only for perturbations with a sufficiently long wavelength and only where there is a sufficiently strong dependence of service potential on population density. Within urban centres, competition for space may cause services and population to be out of phase with one another, occupying separate parcels of land. By introducing competition, along with a preference for population to be located near, but not too near, to high service density areas, secondary out-of-phase patterns occur within the model, at a higher density and with a shorter length scale than in phase patterning. Thus, we show that a small set of core behavioural ingredients can generate aggregations of populations and services, and pattern formation within cities, with length scales consistent with real-world data. The analysis and results are valid across a wide range of parameter values and functional forms in the model.  相似文献   

2.
    
Feedback control is used by many distributed systems to optimize behaviour. Traditional feedback control algorithms spend significant resources to constantly sense and stabilize a continuous control variable of interest, such as vehicle speed for implementing cruise control, or body temperature for maintaining homeostasis. By contrast, discrete-event feedback (e.g. a server acknowledging when data are successfully transmitted, or a brief antennal interaction when an ant returns to the nest after successful foraging) can reduce costs associated with monitoring a continuous variable; however, optimizing behaviour in this setting requires alternative strategies. Here, we studied parallels between discrete-event feedback control strategies in biological and engineered systems. We found that two common engineering rules—additive-increase, upon positive feedback, and multiplicative-decrease, upon negative feedback, and multiplicative-increase multiplicative-decrease—are used by diverse biological systems, including for regulating foraging by harvester ant colonies, for maintaining cell-size homeostasis, and for synaptic learning and adaptation in neural circuits. These rules support several goals of these systems, including optimizing efficiency (i.e. using all available resources); splitting resources fairly among cooperating agents, or conversely, acquiring resources quickly among competing agents; and minimizing the latency of responses, especially when conditions change. We hypothesize that theoretical frameworks from distributed computing may offer new ways to analyse adaptation behaviour of biology systems, and in return, biological strategies may inspire new algorithms for discrete-event feedback control in engineering.  相似文献   

3.
    
Electrocardiogram (ECG) signal quality indices (SQIs) are essential for improving diagnostic accuracy and reliability of ECG analysis systems. In various practical applications, the ECG signals are corrupted by different types of noise. These corrupted ECG signals often provide insufficient and incorrect information regarding a patient’s health. To solve this problem, signal quality measurements should be made before an ECG signal is used for decision-making. This paper investigates the robustness of existing popular statistical signal quality indices (SSQIs): relative power of QRS complex (SQIp), skewness (SQIskew), signal-to-noise ratio (SQIsnr), higher order statistics SQI (SQIhos) and peakedness of kurtosis (SQIkur). We analysed the robustness of these SSQIs against different window sizes across diverse datasets. Results showed that the performance of SSQIs considerably fluctuates against varying datasets, whereas the impact of varying window sizes was minimal. This fluctuation occurred due to the use of a static threshold value for classifying noise-free ECG signals from the raw ECG signals. Another drawback of these SSQIs is the bias towards noise-free ECG signals, that limits their usefulness in clinical settings. In summary, the fixed threshold-based SSQIs cannot be used as a robust noise detection system. In order to solve this fixed threshold problem, other techniques can be developed using adaptive thresholds and machine-learning mechanisms.  相似文献   

4.
    
In journalism subjectivity is not the binary opposite of objectivity. The protagonists on both sides of the Cold War propaganda war were engaged in neither objective nor subjective journalism. While Western journalists working in the trenches of the Cold War at Radio Free Europe or Voice of America used the “mimicry of objectivism” and the “aura of objectivity” as their weapons to counter political propaganda from the East, journalists behind the Iron Curtain were consciously and proudly committed to direct propaganda as the only effective way of intervening in the affairs of the world. This introductory essay suggests a historical frame for interpreting the different practices of the two sides. The three papers that follow this introduction, all based on detailed archival work, analyze different aspects of the unprecedented propaganda Cold War. This war was fought under a serious constraint: the grave shortage of information from the opposing side. Working under conditions of uncertainty, reliable information was substituted by either self‐delusion, wild fantasies, hearsay, lies, or unjustifiable trust in unreliable information. The papers attempt to bring the reader closer to an era that seems to be the opposite of ours: instead of an information deluge, propagandists, pundits, and analysts of the Cold War were forced to live with a dearth of information.  相似文献   

5.
    
Understanding the biology of reproduction of an organismal lineage is important for retracing key evolutionary processes, yet gaining detailed insights often poses major challenges. Planktonic Foraminifera are globally distributed marine microbial eukaryotes and important contributors to the global carbon cycle. They cannot routinely be cultured under laboratory conditions across generations, and thus details of their life cycle remain incomplete. The production of flagellated gametes has long been taken as an indication of exclusively sexual reproduction, but recent research suggests the existence of an additional asexual generation in the life cycle. To gain a better understanding of the reproductive biology of planktonic Foraminifera, we applied a dynamic, individual-based modelling approach with parameters based on laboratory and field observations to test if sexual reproduction is sufficient for maintaining viable populations. We show that temporal synchronization and potentially spatial concentration of gamete release seems inevitable for maintenance of the population under sexual reproduction. We hypothesize that sexual reproduction is likely beneficial during the adaptation to new environments, while population sustenance in stable environments can be ensured through asexual reproduction.  相似文献   

6.
    
Radio Free Europe used balloons to drop leaflets in an attempt to supplement radio with printed words in the 1950s—a historical moment when closing borders, censoring the press, jamming foreign radios, tapping telephone lines, and tracking letters from abroad created an almost hermetically sealed space without many means for exchanging information across the Iron Curtain. This article traces how distorted and limited information shaped Cold War propaganda and practices of information‐gathering. The article further examines unpredictable environmental factors that were transformed into persuasive political rhetoric. A comparative analysis of communist media shows similarities of imagination in a visual propaganda campaign across five communist countries. Fantasies evolved into an object of public interest when propaganda strategies embraced a language of facts.  相似文献   

7.
8.
    
In molecular electronics, it is important to control the strength of the molecule–electrode interaction to balance the trade‐off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π–π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self‐assembled monolayers (SAMs) of Fc(CH2)11X (Fc = ferrocenyl, X = NH2, Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30–40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π–π molecule–electrode coupling are promising platforms to fabricate stable and well‐performing molecular diodes.  相似文献   

9.
    
Precise control of dimensionality and morphology is a crucial requirement for realizing complex and hierarchical assembled structures, which has mainly been studied in highly crystalline systems. However, such results have rarely been reported in the self‐assembly of conjugated block copolymers with relatively weak π–π interactions. Herein, the realization of unique scarf‐like self‐assembled architectures based on the conjugated block copolymers through a facile one‐step approach is reported. Dimensional and morphological control of the micelles are realized by adjusting the block ratio and the solvent polarity. Then the transformation from 1D nanorods to the final hierarchical scarf micelles is observed. Furthermore, the underlying growth mechanism is mainly attributed to the driving force of intermolecular π–π interactions between conjugated core blocks. This work provides a highly effective strategy to prepare hierarchical architectures circumventing those multistep methods used in traditional crystallization system, which could expand the morphological diversity of self‐assembly and further facilitate the exploration of its functional applications.  相似文献   

10.
    
Mitochondrial‐targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin‐loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core–shell–SS–shell architecture are composed of a core of Fe3O4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near‐infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment.  相似文献   

11.
12.
    
Semiconducting polymers with π‐conjugated electronic structures have potential application in the large‐scale printable fabrication of high‐performance electronic and optoelectronic devices. However, owing to their poor environmental stability and high‐cost synthesis, polymer semiconductors possess limited device implementation. Here, an approach for constructing a π‐conjugated polymer/graphene composite material to circumvent these limitations is provided, and then this material is patterned into 1D arrays. Driven by the π–π interaction, several‐layer polymers can be adsorbed onto the graphene planes. The low consumption of the high‐cost semiconductor polymers and the mass production of graphene contribute to the low‐cost fabrication of the π‐conjugated polymer/graphene composite materials. Based on the π‐conjugated system, a reduced π–π stacking distance between graphene and the polymer can be achieved, yielding enhanced charge‐transport properties. Owing to the incorporation of graphene, the composite material shows improved thermal stability. More generally, it is believed that the construction of the π‐conjugated composite shows clear possibility of integrating organic molecules and 2D materials into microstructure arrays for property‐by‐design fabrication of functional devices with large area, low cost, and high efficiency.  相似文献   

13.
14.
    
Conjugated polymers with tailored donor–acceptor units have recently attracted considerable attention in organic photovoltaic devices due to the controlled optical bandgap and retained favorable separation of charge carriers. Inspired by these advantages, an effective strategy is presented to solve the main obstructions of graphitic carbon nitride (g‐C3N4) photocatalyst for solar energy conversion, that is, inefficient visible light response and insufficient separation of photogenerated electrons and holes. Donor‐π–acceptor‐π–donor polymers are prepared by incorporating 4,4′‐(benzoc 1,2,5 thiadiazole‐4,7‐diyl) dianiline (BD) into the g‐C3N4 framework (UCN‐BD). Benefiting from the visible light band tail caused by the extended π conjugation, UCN‐BD possesses expanded visible light absorption range. More importantly, the BD monomer also acts as an electron acceptor, which endows UCN‐BD with a high degree of intramolecular charge transfer. With this unique molecular structure, the optimized UCN‐BD sample exhibits a superior performance for photocatalytic hydrogen evolution upon visible light illumination (3428 µmol h?1 g?1), which is nearly six times of that of the pristine g‐C3N4. In addition, the photocatalytic property remains stable for six cycles in 3 d. This work provides an insight into the synthesis of g‐C3N4‐based D‐π–A‐π–D systems with highly visible light response and long lifetime of intramolecular charge carriers for solar fuel production.  相似文献   

15.
Organic π-conjugated molecules with extremely rich and tailorable electronic and optical properties are frequently utilized for the fabrication of optoelectronic devices. To achieve high solubility for facile solution processing and desirable softness for flexible device fabrication, the rigid π units were in most cases attached by alkyl chains through chemical modification. Considerable numbers of alkylated-π molecular systems with versatile applications have been reported. However, a profound understanding of the molecular state control through proper alkyl chain substitution is still highly demanded because effective applications of these molecules are closely related to their physical states. To explore the underlying rule, we review a large number of alkylated-π molecules with emphasis on the interplay of van der Waals interactions (vdW) of the alkyl chains and ππ interactions of the π moieties. Based on our comprehensive investigations of the two interactions’ impacts on the physical states of the molecules, a clear guidance for state control by alkyl-π engineering is proposed. Specifically, either with proper alkyl chain substitution or favorable additives, the vdW and ππ interactions can be adjusted, resulting in modulation of the physical states and optoelectronic properties of the molecules. We believe the strategy summarized here will significantly benefit the alkyl-π chemistry toward wide-spread applications in optoelectronic devices.  相似文献   

16.
    
π‐Conjugated polymers show promise as active materials in application areas such as microelectronics, electro‐optics, opto‐electronics, and photonics. A critical feature in this emerging technology is device fabrication and the reproducible deposition of active material. This review focuses on current trends in the spatial deposition of conjugated polymers.  相似文献   

17.
    
A new acceptor–donor–acceptor‐structured nonfullerene acceptor ITCC (3,9‐bis(4‐(1,1‐dicyanomethylene)‐3‐methylene‐2‐oxo‐cyclopenta[b]thiophen)‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d′:2,3‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐dithiophene) is designed and synthesized via simple end‐group modification. ITCC shows improved electron‐transport properties and a high‐lying lowest unoccupied molecular orbital level. A power conversion efficiency of 11.4% with an impressive V OC of over 1 V is recorded in photovoltaic devices, suggesting that ITCC has great potential for applications in tandem organic solar cells.  相似文献   

18.
    
High‐energy storage devices are in demand for the rapid development of modern society. Until now, many kinds of energy storage devices, such as lithium‐ion batteries (LIBs), sodium‐ion batteries (NIBs), and so on, have been developed in the past 30 years. However, most of the commercially exploited and studied active electrode materials of these energy storage devices possess a single phase with low reversible capacity or unsatisfied cycle stability. Continuous and extensive research efforts are made to develop alternative materials with a higher specific energy density and long cycle life by element doping or surface modification. A novel strategy of forming composite‐structure electrode materials by introducing structure units has attracted great attention in recent years. Herein, based on previous publications on these composite‐structure materials, some important scientific points focusing on the design of composite‐structure materials for better electrochemical performances reveal the distinction of composite structures based on average and local structure analysis methods, and an understanding of the relationship between these interior composite structures and their electrochemical performances is discussed thoroughly. The lithiation/delithiation mechanism and the remaining challenges and perspectives for composite‐structure electrode materials are also elaborated.  相似文献   

19.
Solvothermal reaction of aluminum isopropoxide (AIP) in mineral oil at 250–300 °C over 2 h duration provides χ-alumina powder, which transforms directly to α-alumina after calcination at high temperature. The mechanism of the crystallization process appears to be the initial formation of a spherical complex which subsequently decomposes further to precipitate a solid. This mechanism is suggested by XRD, IR, TG/DTA, SEM and TEM characterization of the powder formed. χ-Alumina attains a critical crystallite size around 15 nm through accretion on calcination and then transforms directly to α-alumina through nucleation and growth process. Direct α-phase transformation of χ-alumina powders rather than passage through κ-alumina can be explained by the absence of the cation contamination and the higher crystallinity of χ-alumina in the AIP decomposition process.  相似文献   

20.
The formation and phase transformation mechanism of η and σ phases in three experimental polycrystalline superalloys were studied. It was shown that a high (Ti + Al) content in the alloys would favor the formation of η and σ phases in the interdendritic region. Different as-cast microstructures resulted in different phase transformation processes during heat treatment and thermal exposure. Influence of η and σ phase on tensile properties had been investigated as well. The tensile properties of the alloys were sensitive to γ′ volume fraction of the alloys, as well as morphologies of η and σ phases in the interdendritic area. Formation of plate-like η phase had negative impact on the low and intermediate temperature tensile properties of the polycrystalline superalloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号