首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study a poorly biodegradable (BOD/COD = 0.3) industrial alkaline ECF bleaching filtrate was treated using different advanced oxidation processes to evaluate their use in combined chemical-biological treatment aimed at increasing recalcitrant COD removal and improving final effluent quality. Oxidative treatments included ozonation combined with hydrogen peroxide (2, 5, 10, 20 mmol L(-1) O3/0.7, 2, 5, 10 mmol L(-1) H2O2) and photocatalysis with hydrogen peroxide (UV/2, 4 and 8 mmolL(-1) H2O2) and with TiO2 (UV/TiO2/0.7 and 4 mmol L(-1) H2O2). The O3/H2O2 process increased effluent biodegradability by up to 68% as a result of increasing BOD and decreasing COD. Increasing the O3 dose had a greater effect on biodegradability improvement and lignin and colour removal efficiencies than increasing the H2O2 dose. A combined oxidant dose of 5 mmol L(-1) O3 and 2 mmol L(-1) H2O2 resulted in 75% lignin removal, 40% colour removal and 6% carbohydrate loss without mineralizing the organic carbon. The photocatalytic processes led to a decrease in effluent biodegradability through combined decrease in BOD and increase in COD and did not result in efficient lignin or colour removal. Photocatalytic oxidation was apparently inhibited by the high chloride and COD levels in the alkaline filtrate, and may be more efficient in recalcitrant COD removal if performed after biological.  相似文献   

2.
The effect of applying ozonation and perozonation to antibiotic cefazolin-Na formulation effluents were investigated in this study. Twenty minutes of ozonation at a rate of 1,500 mg/L-h was observed to remove COD by 38%, whereas a COD removal efficiency of 40% was achieved via H2O2 enhanced ozonation (same conditions + 31.25 mM H2O2). Both of the pretreatment alternatives were monitored to elevate the BOD5/COD ratio from 0.01 to 0.08. The initially inert COD was reduced by 38% using ozonation and by 60% employing H2O2 enhanced ozonation. In terms of the lowest achievable effluent COD levels after bio-treatment, ozonation was observed to yield a residual COD of 205 mgL(-1), while a residual COD of 135 mgL(-1) was involved for perozonation. According to the results of acute toxicity on Phaedactylum tricornutum, ozonated and perozonated samples exhibited more toxicity than the untreated effluent after 4 days. The activated sludge inhibition test demonstrated that both of the pretreatment alternatives efficiently eliminated the inhibition of investigated formulation effluent.  相似文献   

3.
Chemical pre-treatment of synthetic Procaine Penicillin G (PPG) effluent with ozone (applied dose = 1440 mg/h; treatment duration = 60 min) at pH = 7 was investigated. Successive biological treatability studies were performed with raw, ozonated penicillin formulation effluent and synthetic readily biodegradable substrate as simulated domestic wastewater. The PPG effluent additions were adjusted to constitute approximately 30% of the total COD in the reactor. Ozonation of PPG effluent resulted in practically complete removal of the parent pollutant accompanied by 40% COD abatement. Speaking for the raw PPG effluent, prolonged acclimation periods were necessary to obtain significant COD removal efficiencies. Batch activated sludge treatment experiments and respirometric studies have demonstrated that the selection of true retention time is extremely crucial for having high amount of slowly hydrolysable substrate or complex wastewater, like pharmaceutical effluent. The effect of ozonation time on biological treatability performance of PPG has been evaluated in the study. Pre-ozonation of PPG effluent did not improve its ultimate biodegradability.  相似文献   

4.
A sound in-plant pollution control strategy can only be defined by paying due attention to bio-recalcitrance and toxicity. In this context the levels of toxicity and inert COD introduced to textile dyebath discharges by two alternative auxiliary chemicals, namely natural tannin (NT) and synthetic tannin (ST), were investigated. The effect of 40 minutes ozonation at 1,000 mg h(-1) at pH 3.5 on the segregated effluent streams containing the above-mentioned tannin formulations was evaluated in terms of changes in toxicity and recalcitrance. The effect of ozonation on the COD distribution of raw and ozonated NT and ST samples according to their molecular weight cut-offs was also assessed. Both untreated tannin formulations exerted high acute toxicity towards marine microalgae Phaeodactylum tricornutum. Moderate decrease in the toxicity levels of both tannins was observed upon ozonation. The raw NT formulation with a COD content more than twice that of its alternative raw ST had an initially inert soluble COD content of only 25 mg/L, while the initially inert COD was 135 mg/L for ST. As the initially inert soluble COD content of NT was considerably lower, this textile auxiliary did not need chemical pretreatment to improve its biodegradability. On the other hand, the initially inert soluble COD content of ST was reduced by 70% by ozone pretreatment. In terms of residual COD contents achievable after passing through a biological treatment system, raw NT and pretreated ST formulations yielded 100 and 95 mg/L COD, respectively. The highest proportion of COD (46% for NT and 88% for ST) was found in the <1 kDa range. The same fraction increased to 93% for NT after ozonation, while for ST no significant change was observed in the COD distribution of the molecular weight cut-offs after ozonation.  相似文献   

5.
Landfill leachate of Hong Kong was first treated by the upflow anaerobic sludge blanket (UASB) process. At 37 degrees C, pH 7.1-8.5 and a HRT of 5.1-6.6 days, the process removed 66-90% of COD in the leachate for loading rates of 1-2.4 g-COD/l day depending on the strength of landfill leachate. The final effluent contained 1440-1910 mg-COD/l and 70-91 mg-BOD/l. About 92.5% of the total COD removed was converted to methane and the rest was converted to biomass with an average net growth yield of 0.053 g-VSS/g-COD-removed. The granules developed in the UASB reactor were 0.5-1.5 mm in size and exhibited good settleability. The UASB effluent was then further polished by two oxidation processes. The UASB-ozonation process removed 93.0% of the 12900 mg/l of COD from the raw leachate. The UASB-Fenton-ozonation process improved the COD removal efficiency to 99.3%. The final effluent had only 85 mg/l of COD and 10 mg/l of BOD5. Ozonation was most effectively conducted at pH 7-8 with the addition of 300 mg/l of H2O2 and for the duration of 30 min. Ozonation also significantly improved the biodegradability of the organic residues. Nearly 50% of these residues could be used as carbon source in denitrification.  相似文献   

6.
Landfill leachates are a problematic wastewater due to their variable concentration, volume changing in time and presence of refractory and hazardous components. In this paper, the results of a new approach to photocatalysis assisted by biological process for the detoxification of stabilised landfill leachate are presented. The biologically pre-treated leachate still contained a significant amount of non-biodegradable COD and TOC amounting to 500 and 200 mg/L, respectively. The 300 min of photocatalytic treatment (UVC/TiO2) brought about a significant decrease in more than 80% refractory organics remaining in leachate. The effect of pH and catalyst loading on mineralisation, colour removal rate and biodegradability (BOD/COD) improvement in the photoreactor were discussed. The bio-accessibility of formed photocatalytic oxidation intermediates was confirmed by oxygen uptake rate (OUR) measurements. Consequently, a part of COD was successfully removed in post-biological treatment.  相似文献   

7.
The versatile metabolism of microorganisms has an played important role in the biodegradation of recalcitrant toxic compounds entering into the natural environment. The biodegradability of organics can be enhanced using bioaugmentation and advanced oxidation processes (AOP) for aerobic/anaerobic treatment programs. Wastewater from a bulk drug (cresol) plant had high levels of TDS, COD and BOD, whilst the levels from a pigment plant low. Both contained organics difficult to degrade. AOP using hydroxyl radical generated in 1 L glass reactor using UV and H2O2 efficiently oxidised phenol and cresol. COD and sulphite reduction in cresol containing wastewater were 20-60% in 1-6 h. A twenty to thirty percent reduction in copper phthalocyanine pigment effluents was achieved in 6 h using AOP. Strains of Micrococcus, Pseudomonas, and Nocardia degrading phenol, cresol were isolated from soil and sludge. Mixed biomass of these organisms removed phenols (1,000 ppm) and cresols (500 ppm) completely in 24 and 72 h, respectively. The COD and BOD reductions under the optimum nutritional and physiological conditions were in the range of 70 to 90%. When added to the bioreactor, 20% of the developed biomass of mixed strains of Micrococcus, Nocardia and Pseudomonas increased the rate of COD and BOD reduction gradually and stabilised at 80-90%. Added biomass improved the overall efficiency of the aerobic process.  相似文献   

8.
In treating textile wastewater, the application of membrane bioreactor (MBR) technology showed high efficiency in COD and BOD5 removal. However, insufficient colour removal was achieved for possible reuse. The aim of the work presented in this paper was to test the performance of chemical advanced oxidation on the elimination of the colour downstream of an MBR. To improve the quality of the membrane bioreactor effluent three different oxidation treatments were tested at lab-scale: ozonation, chlorination and hydrogen peroxide oxidation. Colour, COD and BOD5 were controlled in order to assess the effectiveness of each process. For chlorination, even with 250 mg/L (active chlorine) only 80% colour removal (SACin = 14; SACout = 2.8) was achieved which is considered unsatisfactory. For hydrogen peroxide, the colour removal was even poorer; it was just 10% at a concentration of 250 mg/L. In contrast, good results were obtained by ozonation. By using only 38 mg/L within 20 minutes, it was possible to achieve the reuse recommendation with a satisfactory colour removal of 93% (SACin = 14; SACout = 0.98). The results showed that ozonation was the most promising method.  相似文献   

9.
Pretreatment of an acid dyebath effluent bearing a new generation chromium complex azo dyestuff (C0 = 350 mg/L) with Fenton's reagent was investigated. Preliminary optimisation (baseline) experiments were conducted to determine the Fe2+, H2O2 concentrations and pH required to the highest possible COD and colour removals. Kinetic studies were carried out at varying temperatures (20 degrees C < T < 70 degrees C) to establish a relationship between COD abatement and H2O2 consumption. The activation energy found for catalytic H2O2 decomposition (Ea = 9.8 kJ/mol) appeared to be significantly less than that of fermentative (Ea = 23 kJ/mol) and of thermal (Ea = 76 kJ/mol) H2O2 decomposition, implying that H2O2 decomposition during the Fenton's reaction occurs more spontaneously. The experimental studies indicated that approximately 30% COD and complete colour removal could be achieved under optimised Fenton pretreatment conditions (Fe2+ = 2 mM; H2O2 = 30 mM; pH = 3; at T = 60 degrees C). Long-term activated sludge experiments revealed that although the raw and pretreated acid dyebath effluent contained practically the same amount of "readily biodegradable" COD (inert COD fraction < or = 10%), biodegradation of the chemically pretreated acid dye effluent proceeded appreciably faster than that of the untreated acid dyebath effluent.  相似文献   

10.
The present study aimed mainly for the development of a wastewater treatment system incorporating enhanced primary treatment, anaerobic digestion of coagulated organics, biofilm aerobic process for the removal of soluble organics and disinfection of treated water. An attempt was also made to study the reuse potential of treated water for irrigation and use of digested sludge as soil conditioner by growing marigold plants. Ferric chloride dose of 30 mg/l was found to be the optimum dose for enhanced primary treatment with removals of COD and BOD to the extent of 60% and 77%, respectively. Efficient anaerobic digestion of ferric coagulated sludge was performed at 7 days hydraulic retention time (HRT). Upflow aerobic fixed film reactor (UAFFR) was very efficient in removals of COD/BOD in the organic loading rate (OLR) range of 0.25 to 3 kg COD/m(3)/day with COD and BOD removals in the range 65-90 and 82-96, respectively. Photo-oxidation followed by disinfection saved 50% of chlorine dose required for disinfection of treated effluent and treated water was found to be suitable for irrigation. The result also indicated that anaerobically digested sludge may be an excellent soil conditioner. From the results of this study, it is possible to conclude that the developed wastewater treatment system is an attractive ecologically sustainable alternative for sewage treatment from institutional/industrial/residential campuses.  相似文献   

11.
The secondary effluent from municipal plants in Korea generally represents higher BOD with lower SS. Therefore, more soluble forms of organics and NH4-N need to be removed to improve its effluent for reuse. In this study reuse possibility of secondary effluent and CSO (combined sewer overflow) using BAF (biological aerated filter) was evaluated. The tertiary application with 1.2 h EBCT, SS, BOD and COD showed stable concentrations less than 1.3, 1.3 and 6.2 mg/L, respectively. Nitrogen could be nitrified even at 7 degrees suggesting BAF can be used for a water reuse method as well as an effective add-on facility in cold regions. However, BAF was not stable with CSO application at increased flow rates suggesting CSO must be equalised prior to application. Disinfection was necessary even during normal weather conditions.  相似文献   

12.
Electrochemical oxidation was applied to treat the effluent from bioreactor landfill with leachate recirculation, characterised as poor biodegradability and high NH3-N concentration. In this study, the effluent was electrolysed in a batch reactor with Ti/TiO2-IrO2-RuO2 anode and stainless steel cathode. The oxidation of dissolved organic matter (DOM) during electrolysis was evaluated based on the evolution of molecular weight grade, hydrophilic fractionation (humic acid, fulvic acid and hydrophilic fractions), specific ultraviolet absorbance (SUVA254) and AOX. The impact of the initial NH3-N concentration on the oxidation was discussed. The results showed that at a current density of 100 mA/cm2, electrolysis time of 1.5 h and electrode gap of 1 cm, NH3-N with an initial concentration of 1.2 g/L could be completely eliminated and 56% of COD with an initial concentration of 1.2 g/L could be removed, which illustrated that the electrolysis-produced chlorine preferentially oxidised ammonia. The electrolysis mainly resulted in the degradation of humic substances and other high molecular DOM, followed by the increase of BOD/COD ratio and decline of SUVA254 of the leachate. The current efficiencies for COD and ammonia oxidation gradually decreased during the electrolysis, with the latter obviously higher than the former. At the optimal electrolysis time of 1.5 h, NH3-N could be totally removed and the BOD/COD ratio could be enhanced to 0.3, which was also favourable to control the AOX at a reasonable level.  相似文献   

13.
The method of enhancing the biodegradability of landfill leachate via air stripping followed by coagulation/ultrafiltration (UF) processes is introduced. In this study, the air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH3-N), at an air-to-liquid ratio (A/L) of 3 300 (pH = 11) and after 18 h of stripping. The single coagulation process increased the BOD (biological oxygen demand)/COD (chemical oxygen demand) ratio by 0.089 with a FeCl3 dosage of 570 mg/L, at pH 7.0, and the single UF process increased the BOD/COD ratio from 0.049 to 0.311. However, the combination of coagulation and UF increased the BOD/COD ratio from 0.049 to 0.423, and the final BOD, COD, NH3-N, and colour of the leachate were 1 023 mg/L, 2 845 mg/L, 145 mg/L, and 2 056, respectively, when a 3 kDa molecular weight cut-off (MWCO) membrane was used at an operating pressure of 0.7 MPa. In the ultrafiltration process, the average solution flux (Jv), concentration multiple (Mc), and retention rate (R) for the COD were 107.3 L/(m^2·h), 6.3, and 84.2%, respectively.  相似文献   

14.
Heterogeneous catalytic ozonation (HCO) of wastewater is gaining both research and industrial interests. It is proved to be an advanced oxidation process since it involves hydroxyl radicals as oxidation species. Few studies have been carried out to test HCO in the treatment of landfill leachates. This work has been carried out to test three types of catalysts: activated carbon (AC), expanded perlite (EP) and titanium dioxide (TiO2) combined with ozone at 80 g/m3 gas concentration for the treatment of a leachate generated by Jebel Chakir landfill site near Tunis-capital of Tunisia. The work has shown a reduction in COD of about 45% and an increase in biodegradability (BOD5/COD) from 0.1 to 0.34. A catalyst concentration of 0.7 g/L was found optimal for the treatment of the leachate.  相似文献   

15.
In order to treat wastewater to a low residual COD-concentration such as 125 mg/L, classical biological treatment is not sufficient for many types of industry. This research focused on the integrated treatment of the wastewater of the paper industry, with a membrane bioreactor (MBR) and an oxidation step. The optimal configuration was examined. Screening tests with different types of oxidation showed that ozonation after biological treatment could reduce the COD with 40% with an ozone dose of 0.4-0.8g O3/g COD. BOD/COD ratio could be increased up to 0.19. Neither combination of ozone with UV and/or hydrogen peroxide nor the process H2O2/UV or (photo-)Fenton reagents gave any improvement in COD reduction or BOD increase, unless the doses were very high. Based on these results, an integrated system MBR-ozonation was designed, with recirculation of MBR effluent over ozonation. This test showed that reduction of COD up to 125 mg/L immediately behind the MBR required a lot of ozone. A technically feasible solution was to discharge the water after an extra ozonation step, which resulted in a high total ozone dosage. The alternative, the consecutive treatment activated sludge-ozonation-activated sludge, did not give a better COD-removal with the same ozone dose as the integrated concept. The economic evaluation proves that the integrated chemical and biological treatment is expensive for the paper industry if a low discharge limit of COD has to be complied with.  相似文献   

16.
The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.  相似文献   

17.
研究厌氧附着膜膨胀床反应器中温处理乳品废水的运行工况。讨论在不同水力停留时间、容积负荷、pH值条件下对COD去除率的影响,并对进出水总氮及氨氮的变化情况进行研究。试验表明:厌氧附着膜膨胀床反应器处理乳品废水,在水力停留时间为8h、中温35℃条件下,COD去处率达到80%以上,对总氮的去除约为8%,出水有机氮的氨化率达70%以上,ρ(BOD)/ρ(COD)由进水的0 5提高到0 8以上。  相似文献   

18.
The present work describes an experimental study carried out in order to investigate the efficiency and feasibility of physical (lime coagulation) and advanced oxidation processes (Ozone and Fenton's process) for olive oil mill wastewater treatment. Particular attention was paid to the degradation of both organic and phenolic compounds. Lime coagulation reaches maximum removal at a pH of 12, with a TP (total polyphenols) and COD reduction of 37 and 26%, respectively. Ozone oxidation is also pH-dependent, showing the higher removal efficiency (91% for TP and 19% for COD) with an initial pH value of 12. Experimental results show a lower efficiency of Fenton's process than ozone in TP removal, reaching a maximum value of 60%. Oxidation trials carried out on gallic and p-coumaric synthetic solutions confirmed ozone and Fenton's efficiency at degrading phenolic compounds. Biological trials, both aerobic and anaerobic, highlighted a significant increase of biodegradability of treated OMW samples if compared to the untreated ones. Respirometric tests showed an increase in BOD of about 20% and anaerobic batch tests provided a methane production up to eight times higher.  相似文献   

19.
The UASB reactor (35 degrees C) was quite efficient for removal of bulk COD (52-74%) from simulated (on the basis of cultivation medium from the first separation process) general effluent of baker's yeast production (the average organic loading rates varied from 8.1 to 16 g COD/l/d). The aerobic-anoxic biofilter (19-23 degrees C) can be used for removal of remaining BOD and ammonia from anaerobic effluents; however, it suffered from COD-deficiency to fulfil denitrification requirements. To balance COD/N ratio, some bypass (approximately 10%) of anaerobically untreated general effluent should be added to the biofilter feed. The application of iron (III)-, aluminium- or calcium-induced coagulation for post-treatment of aerobic-anoxic effluents can fulfil the limits for discharge to sewerage (even for colour mainly exerted by hardly biodegradable melanoidins), however, the required amounts of coagulants were relatively high.  相似文献   

20.
Anaerobic bio-hydrogen production is the focus in the field of bio-energy resources. In this paper, a series of batch experiments were conducted to investigate the effects of several factors on anaerobic bio-hydrogen producing process carried out by pre-heated river sediments. The results showed that several factors such as substrate and its concentration, temperature and the initial pH value could affect the anaerobic bio-hydrogen production in different levels. At 35 degrees C and the initial pH of 6.5, using glucose of 20,000 mg COD/L as substrate, the highest hydrogen production of 323.8 ml-H2/g TVS in a 100 ml batch reactor was reached, the specific hydrogen production rate was 37.7 ml-H2/g TVS h, and the hydrogen content was 51.2%. Thereafter using the same pre-heated river sediments as seed sludge, continuous anaerobic bio-hydrogen production was achieved successfully in a lab-scale CSTR with gas-separator. At the organic loading rate of 36 kg COD/m3 d, the highest hydrogen production was 6.3-6.7 l-H2/l-reactor d, the specific hydrogen production was 1.3-1.4 mol-H2/mol-glucose, and the hydrogen content in the gas was 52.3%. The effluent of the bio-reactor contained some small molecular organics, mainly including ethanol, acetate, butyrate and their molar proportion is 1:1:0.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号