首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This article considers the distributed robust control problems of uncertain linear multi-agent systems with undirected communication topologies. It is assumed that the agents have identical nominal dynamics while subject to different norm-bounded parameter uncertainties, leading to weakly heterogeneous multi-agent systems. Distributed controllers are designed for both continuous- and discrete-time multi-agent systems, based on the relative states of neighbouring agents and a subset of absolute states of the agents. It is shown for both the continuous- and discrete-time cases that the distributed robust control problems under such controllers in the sense of quadratic stability are equivalent to the H control problems of a set of decoupled linear systems having the same dimensions as a single agent. A two-step algorithm is presented to construct the distributed controller for the continuous-time case, which does not involve any conservatism and meanwhile decouples the feedback gain design from the communication topology. Furthermore, a sufficient existence condition in terms of linear matrix inequalities is derived for the distributed discrete-time controller. Finally, the distributed robust H control problems of uncertain linear multi-agent systems subject to external disturbances are discussed.  相似文献   

2.
针对微电网系统运行成本最优化问题,提出一种分布式优化下垂控制策略.首先,基于一致性理论,给出了一种分布式经济调度算法.采用矩阵摄动理论,分析了经济调度算法的收敛特性.其次,基于分布式优化调度解,设计一种新的分布式优化下垂控制器.在满足供需平衡以及各个发电单元运行约束的条件下,控制策略使得微电网系统运行成本最低.同时,提出的控制策略能够保证孤岛微电网的频率稳定在额定值.最后,通过仿真实例,验证了分布式优化下垂控制策略的有效性.  相似文献   

3.
为解决交流微电网下垂控制产生的偏差问题, 本文采用二次控制对分布式电源输出电压和频率进行调节. 将微电网看成分布式多智能体系统, 智能体间通过稀疏网络进行通信, 运用多智能体一致性协议, 本文提出一种基 于障碍Lyapunov函数和自适应模糊系统的二次电压和频率控制器. 采用障碍Lyapunov函数设计控制器, 不但能保 持系统的稳定性, 还可使输出的电压和频率限制在预设的范围内. 采用自适应模糊系统可对系统中的一些参变量的 变化进行估计, 提高了控制器的鲁棒性. 本文给出了严格的稳定性证明. 通过对负载变化, 以及拓扑结构改变等的 仿真测试, 验证了所提方案的有效性.  相似文献   

4.
This note is focused on control systems in which the observer is not co-located with the controller and the communication channel between them is of limited bandwidth. Due to the low data rate requirement, the control law must be of simple form. As a result, a tristate distributed controller is examined. The control algorithm is proven to be convergent if the system structure satisfies certain technical conditions. The convergence is robust in the sense that the system parameters and even the structure of the underlying system dynamics need not to be completely known.  相似文献   

5.
This paper proposes an intelligent complementary sliding-mode control (ICSMC) system which is composed of a computed controller and a robust controller. The computed controller includes a neural dynamics estimator and the robust compensator is designed to prove a finite L2-gain property. The neural dynamics estimator uses a recurrent neural fuzzy inference network (RNFIN) to approximate the unknown system term in the sense of the Lyapunov function. In traditional neural network learning process, an over-trained neural network would force the parameters to drift and the system may become unstable eventually. To resolve this problem, a dead-zone parameter modification is proposed for the parameter tuning process to stop when tracking performance index is smaller than performance threshold. To investigate the capabilities of the proposed ICSMC approach, the ICSMC system is applied to a one-link robotic manipulator and a DC motor driver. The simulation and experimental results show that favorable control performance can be achieved in the sense of the L2-gain robust control approach by the proposed ICSMC scheme.  相似文献   

6.
杨强  刘玉生 《控制与决策》2015,30(6):993-999
基于自适应非线性阻尼,提出一种鲁棒自适应输出反馈控制方法。该方法适用于带有未建模动态、未知非线性、有界扰动、未知非线性参数和不确定控制系数的多输入多输出非线性系统。理论证明,在一定的假设条件下,该方法能保证闭环系统所有动态信号有界;不论有多少不确定非线性参数、多高阶的非线性系统,只需要一个自适应控制参数和观察参数;而且通过选择适当的控制器和观测器参数,能使控制误差和估计误差达到任意小。仿真结果表明了所提出方法的有效性。  相似文献   

7.
卢自宝  钟尚鹏  郭戈 《自动化学报》2021,47(10):2472-2483
本文研究了分布式控制策略下直流微电网的负荷分配和电压平衡问题. 给出一种新的基于分布式策略的下垂控制器设计方法, 能够在统一的框架下实现直流微电网负载共享和电压平衡. 首先,将直流微电网的负载共享和电压平衡问题转化为多目标优化问题, 其性能指标与微源的容量密切相关. 然后, 通过求解多目标优化问题获得实现负载共享和电压平衡的集中式控制策略, 并给出下垂控制器的设计方法. 为了降低系统的通信负担, 给出一种新的只需与邻居节点交换信息的分布式控制策略, 通过理论分析可知该分布式控制策略能够收敛到多目标优化问题的最优解. 最后, 通过对新能源汽车充换电站系统的仿真验证了本文提出的方法的有效性.  相似文献   

8.

In this paper, a robust adaptive boundary controller is proposed to stabilize the coupled rigid-flexible motion of an Euler-Bernoulli beam in presence of boundary and distributed perturbations. Applying Hamilton’s principle, the dynamics of the hybrid beam model, including the actuators hub and the payload at its ends, is represented through four nonhomogeneous nonlinear partial differential equations (PDEs) subject to ordinary differential equations (ODEs) of boundary conditions. Using a Lyapunov-based control synthesis procedure, a robust nonlinear boundary controller is established that asymptotically stabilizes the perturbed beam vibration while regulating the rigid motion coordinates. A redesign of the proposed control laws produces a robust adaptive boundary controller that achieves control objectives in the presence of both parametric and modelling uncertainties. Control design is directly based on system PDEs without truncating the model so that instabilities from spillover effects are mitigated. The control inputs to the beam consist of three forces/torque applied to the actuators hub and a transverse force applied to the tip payload. Simulation results are used to investigate the efficiency of the proposed approach.

  相似文献   

9.
针对多操纵面飞机具有冗余操纵面的特点,考虑包含操纵面偏转角的位置约束和速率约束以及未知有界参数时的非线性控制分配问题,设计一种由上层虚拟控制律和自适应控制分配更新律组成的非线性角速度跟踪控制器.当系统满足充分激励条件时,基于集合稳定性理论,分别证明了上层虚拟控制子系统、控制分配子系统和整个闭环系统的全局一致渐近稳定性.对某多操纵面飞机的仿真结果验证了所提出方法的有效性,并且该方法能使参数估计收敛至真实值.  相似文献   

10.

研究具有外部不确定性R¨ossler 混沌系统的鲁棒跟踪控制问题. 基于动态面控制原理设计自适应鲁棒控制器, 给出了系统参数的自适应更新律, 使得被控闭环系统的各误差变量一致有界. 系统输出曲线渐近跟踪任意期望轨道, 且跟踪误差能被控制在任意小的范围内, 而无须知道系统的参数及外部不确定性的界限. 基于稳定理论给出了具体的稳定性分析, 并通过数值仿真验证了该方法的有效性及鲁棒性.

  相似文献   

11.
Control strategies of distributed generation (DG) are investigated for different combination of DG and storage units in a microgrid. In this paper the authors proposed a microgrid structure which consists of a detailed photovoltaic (PV) array model, a solid oxide fuel cell (SOFC) and various loads. Real and reactive power (PQ) control and droop control are developed for microgrid operation. In grid-connected mode, PQ control is developed by controlling the active and reactive power output of DGs in accordance with assigned references. Two PI controllers were used in the PQ controller, and a novel heuristic method, artificial bee colony (ABC), was adopted to tune the PI parameters. DGs can be controlled by droop control both under grid-connected and islanded modes. Droop control implements power reallocation between DGs based on predefined droop characteristics whenever load changes or the microgrid is connected/disconnected to the grid, while the microgrid voltage and frequency is maintained at appropriate levels. Through voltage, frequency, and power characteristics in the simulation under different scenarios, the proposed control strategies have demonstrated to work properly and effectively. The simulation results also show the effectiveness of tuning PI parameters by the ABC.  相似文献   

12.
For the single phase inductance-capacitance-inductance (LCL) grid-connected inverter in micro-grid, a kind of robust iterative learning controller is designed. Based on the output power droop characteristics of inverter, the current sharing among the inverters is achieved. Iterative learning strategy is suitable for repeated tracking control and inhibiting periodic disturbance, and is designed using robust performance index, so that it has the ability to overcome the uncertainty of system parameters. Compared with the repetitive control, the robust iterative learning control can get high precision output waveform, and enhance the tracking ability for waveform, and the distortion problem of the output signal can be solved effectively.  相似文献   

13.
This paper presents a robust adaptive fuzzy control algorithm for controlling unknown chaotic systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal controller, based on sliding-mode control. The robust controller is designed to compensate for the difference between the fuzzy controller and the ideal controller. The parameters of the fuzzy system, as well as uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the stability of the controlled system. Numerical simulations show the effectiveness of the proposed approach.  相似文献   

14.
This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is connected to the power grid through a controllable switch. A double loop current-regulated voltage control scheme for the DC-AC interface is designed. In the case of the load disturbance and the model uncertainties, the inner voltage and current loop are produced based on the H∞ robust control strategies. The outer power loop uses the droop characteristic controller. Finally, the scheme is simulated using the Matlab/Simulink. The simulation results demonstrate that DC-AC interfaced microsource system can supply high quality power. Also, the proposed control scheme can make the system switch smoothly between the isolated mode and grid-connected mode.  相似文献   

15.
The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.  相似文献   

16.

At present, switched reluctance motors (SRM) become very interesting for many industrial applications in variable speed control. For such systems, the linear quadratic regulator with integral action (LQI) method is commonly used when using plants in state spaces due to its robustness and easy adjustment. All methods from the linear quadratic regulator (LQR) project provide a weighting of the Q and R matrices, which are manually adjusted to achieve the desired performance. The manual fine tuning of LQI controller parameters is a difficult task that requires a high level of domain knowledge. In this work, metaheuristic algorithms are explored to design the LQI controller and a comprehensive comparison is made between these algorithms and Proportional-Integral-Derivative (PID) controller as well as to select the best technique for the LQI controller design and adjustment of the Q and R parameters in SR Motor. Simulation and experimental results on a setup prototype are shown to validate the proposed control schemes. This paper has as main contributions the weighting of the parameters of the LQI in an optimized way and adjustment of the gains of the controller more quickly and the hybrid controller (LQI + GA) becomes more powerful in the sense of a possible extension of the control of a multivariable system.

  相似文献   

17.
杜贞斌 《控制与决策》2015,30(7):1325-1328
针对一类不确定非线性系统,提出一种新的模糊鲁棒H∞跟踪控制方案。应用模糊T-S模型表征非线性系统,系统不确定性通过模糊逻辑系统消除。由线性矩阵不等式和自适应律给出了模糊控制器存在的一个充分条件。基于Lyapunov稳定性理论,模糊控制方案在所有闭环信号最终一致有界下保证了期望的H∞跟踪性能。两连杆机械臂的仿真结果表明了该方案的可行性。  相似文献   

18.
This paper presents a Nussbaum function–based universal cooperative output regulation design for a class of nonlinear multiagent systems with both an unknown exosystem and nonidentical unknown control directions. The major challenges include the nonidentical unknown control directions in a directed communication graph and the concurrence of the unknown parameters in both the plant and the exosystem. To handle the nonidentical unknown control directions, we propose a dynamic compensator–based distributed controller such that the Nussbaum gain technique can be successfully implemented under directed communication graphs. Moreover, to deal with the unknown exosystem, we integrate the distributed controller with a novel internal model candidate. The resulting distributed controller is a universal regulator in the sense that it does not require the unknown parameters to be in known compact sets. Furthermore, the proposed controller is more flexible compared with those in the existing works as any existing Nussbaum gains can be adopted in the controller design and the adopted Nussbaum gains can be nonidentical for each agent.  相似文献   

19.
针对使用永磁同步电机作为执行机构的高精度交流调速系统中存在负载惯量时变、转矩扰动和未建模动态的情况,利用带遗忘因子的递推最小二乘算法(FRLS)在线辨识系统时变参数,通过扩张状态观测器(ESO)观测参数辨识误差和未建模动态等非线性因素,设计一种集 PI 控制器、基于 FRLS 的补偿器、基于 ESO 的补偿器和鲁棒控制器的复合速度控制器,并分析了闭环调速系统的稳定性.仿真结果验证了该复合速度控制器的有效性.  相似文献   

20.
针对具有执行器故障和外界扰动的线性重复过程,给出一种鲁棒迭代学习容错控制策略.首先,基于二维(2D)系统理论,设计鲁棒迭代学习容错控制器,将迭代学习控制系统等效转化为2D模型;然后,利用线性矩阵不等式(LMI)技术,分析和优化控制系统在时间和迭代方向上的容错性能以及对干扰的抑制性能,同时给出系统满足这些性能的充分条件,并进一步通过求解LMI凸优化问题获得控制器参数;最后,通过对旋转控制系统的仿真结果验证了所提出算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号