首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 66 毫秒
1.
复杂硫化铜精矿加压浸出动力学   总被引:3,自引:0,他引:3  
在初始硫酸浓度1.23mol/L,液固比(mL/g)30/1,氧分压0.6MPa,搅拌转速度500r/min条件下,研究以黝铜矿为主要矿物的硫化铜精矿在408~453K温度范围内加压浸出动力学.结果表明,在浸出达到平衡之前,铜、锌、铁浸出率与浸出时间呈良好的线性关系.随温度升高,铜、锌浸出达到平衡所需的时间不断缩短,相对而言,锌浸出更早达到平衡.在408~438K范围内,铜、锌浸出速率均随浸出温度升高而不断增大,而且锌浸出速率始终高于铜.随浸出温度升高至453K后,锌浸出速率未见明显变化,铜浸出速率则显著增大且高于锌,铁浸出速率增长低于铜.复杂硫化铜精矿中铜、锌浸出反应的表观活化能分别为71.98kJ/mol和69.33kJ/mol,铜、锌浸出过程均遵循界面化学反应控制的收缩核模型.  相似文献   

2.
用盐酸和硫铁矿烧渣浸出硫化铜精矿的研究   总被引:1,自引:0,他引:1  
研究了FeCl3浸出铜精矿的条件,当Fe^3+浓度540g/l、液固化为8、在90℃下浸出16h铜的浸出率为71.5%。用盐酸与硫酸烧渣混合液代替FeCl3搅拌浸出20h,铜的浸出率为69.2%,为利用低品位铜精矿和硫酸烧渣开辟了新的途径。  相似文献   

3.
蒋太国  朱光洁 《矿冶》2017,26(6):63-66
近年来,生物浸矿技术在铜矿分离回收中得到了较为广泛的应用(生物浸出在硫化铜矿回收利用中得到了较为广泛的应用)。针对生物浸矿技术在硫化铜矿分离回收中的应用展开综述,同时对相关的最新理论研究等进行总结,提出了硫化铜矿生物浸矿技术目前存在的问题和几点建议,以期为硫化铜矿的回收利用提供指导。  相似文献   

4.
陶德宁 《铀矿冶》2003,22(3):116-116
Sadowski Z.等人在《Minerals Engineering》2003年第16卷第1期上撰文,介绍波兰生物浸出浮选铜精矿的研究工作。试验的精矿为含金精矿和一般精矿,分别来自波兰Polkowice矿和Lubin矿。 2 种精矿生物浸出试验分别在250mL Erlenmayer摇瓶和旋转生物反应器中进行,所用细菌为氧  相似文献   

5.
传统选冶提铜工艺因成本高、经济效益差和资源利用率低等缺点制约其难于处理低品位硫化铜矿,生物浸出技术是处理低品位硫化铜矿的有效方法,对提高我国铜资源开发利用率、缓解我国优质铜矿供需矛盾突出和提升铜矿资源的服务保障年限具有重要的意义。本文采用生物提铜萃余液对某低品位次生硫化铜矿柱浸180d,尾渣铜品位由0.23%降低至0.064%,铜浸出率为72.17%。  相似文献   

6.
硫化铜精矿经用量为1.0~1.4t/t浓硫酸,在105~145℃条件下熟化10~20h,添加复合氧化剂和催化剂在一定温度下浸出120min(液固比为6),当复合化剂FS32用量为37.5~70.0kg/t,催化剂CH10用量为5kg/t时,其最高浸出率可达98.46%。  相似文献   

7.
铜精矿的硫酸熟化—催化氧化浸出工艺研究   总被引:1,自引:0,他引:1  
硫化铜精矿经用量为 1 0~ 1 4t/t浓硫酸 ,在 10 5~ 14 5℃条件下熟化 10~ 2 0h ,添加复合氧化剂和催化剂在一定温度下浸出 12 0min(液固比为 6 ) ,当复合氧化剂FS32用量为 37 5~ 70 0kg/t,催化剂CH10用量为 5kg/t时 ,其最高浸出率可达 98 46 %。  相似文献   

8.
硫化矿生物浸出动力学模型的研究   总被引:3,自引:0,他引:3  
本文概括了硫化矿生物浸出动力学模型的理论及其发展,重点介绍影响微生物铁氧化生长动力学模型的关键因子及研究的相关模型和研究方法的综合应用。  相似文献   

9.
银山低品位复杂硫化铜矿生物浸出条件优化研究   总被引:1,自引:0,他引:1  
采用摇瓶摇床浸出预实验与正交实验, 对江西银山低品位复杂硫化铜矿进行了浸出条件试验, 对浸出菌种、温度、pH值、转速和矿浆浓度等条件进行了优化。实验结果表明, 当浸出温度45 ℃, 浸出菌为嗜热氧化硫硫杆菌与嗜酸喜温硫杆菌的组合, 浸出体系pH值为1.7, 转速190 r/min, 矿浆浓度为10%时, 铜离子的浸出率达到72.3%。该研究为江西银山低品位复杂硫化铜矿的微生物冶金技术工业化提供了理论依据。  相似文献   

10.
硫化矿生物浸出电化学   总被引:13,自引:3,他引:13  
  相似文献   

11.
铜钴硫化物精矿氧压浸出工艺研究   总被引:1,自引:1,他引:0  
兰玮锋 《矿冶工程》2018,38(4):115-117
对铜钴硫化物精矿进行了氧压浸出工艺研究。结果表明,在温度180 ℃、氧分压600 kPa、液固比4、反应时间2 h的浸出条件下,铜浸出率99%,钴浸出率98.5%,硫浸出率98%。氧压浸出工艺具有铜钴浸出率高、浸出过程硫酸根平衡较好、不产生明显过剩硫酸、浸出后液易于处理等优点。  相似文献   

12.
常温浸矿菌对高砷铜精矿浸出机理的研究   总被引:1,自引:0,他引:1  
采用浸矿菌浸出高砷铜精矿中的铜, 研究了浸出作用机理。通过比较浸出前后高砷铜精矿表面的变化和浸矿菌的吸附情况, 并结合浸出过程铁离子的变化对铜的浸出率的影响, 发现高砷铜精矿生物浸出的主要作用机理是间接作用机理。  相似文献   

13.
闪锌矿与中性浸出渣合并氧压酸浸   总被引:3,自引:0,他引:3  
硫化锌精矿和由传统流程得到的中浸渣混在一块,对其进行了浸出的小型试验.试验在不同的条件下进行,以考察影响浸出的各种因素,包括浸出温度、浸出时间、氧分压和搅拌速度.试验在一个两升的高压釜内进行.试验结果表明了硫化锌精矿和中浸渣能相到促进浸出,但只有在一定的浸出条件下这种耦合作用才表现得比较明显.研究过程中一些机理也得到了证实.最后为了后面的扩大试验提供了关键的浸出条件:浸出温度135℃;浸出时间2h;氧分压0.8MPa;初始酸度120g/L.  相似文献   

14.
云南大红山铜矿化学浸出研究   总被引:2,自引:2,他引:0  
以云南大红山铜矿的铜精矿为研究对象,分别考查其在稀硫酸、硫酸高铁、硫酸亚铁三种介质中的溶解情况。通过试验研究发现,在pH1.0~2.0、常温常压条件下,该铜精矿基本不溶于稀硫酸溶液和硫酸高铁溶液,而在硫酸亚铁溶液中该铜精矿溶解速率明显加快,但浸出后期有明显的钝化现象。浸渣XRD和SEM分析表明,硫酸亚铁溶液浸出后浸出渣有单体硫物相存在,而且矿物表面有明显的"腐蚀坑",能谱分析也证实矿物表面有硫元素过量的情况。另外,硫酸亚铁溶液浸出过程中体系酸耗明显增加,这一方面是由于Fe2+离子氧化造成的,另一方面矿石的大量溶解也增加了酸耗量。  相似文献   

15.
彭晓  陈玉明 《金属矿山》2015,44(3):92-94
云南某铜银精矿铜、银、硫含量分别为5.63%、2 419 g/t和4.28%,-0.077 mm含量为79.50%。为了提高产品附加值,减少运输成本,为企业创造更好的业绩,对该精矿进行了火湿冶金工艺条件研究。结果表明,在工业食盐与试样质量比为1∶20,焙烧温度为850 ℃,焙烧时间为1.5 h情况下进行氯化焙烧,焙烧产物用浓度为2%的稀硫酸预处理后,再添加浓度为25%、体积为稀硫酸体积10%的氨水处理60 min,可获得96.60%和96.40%的铜、银浸出率。该方法是从铜银硫化矿精矿中高效回收铜、银的方法,具有工艺简单、回收率高、易操作等特点。  相似文献   

16.
针对小样本数据条件下预测硫化铜精矿品位的问题,提出了基于灰色理论的铜精矿品位预测模型。该模型通过试验所得的小样本数据,动态改变建模数据的初始值和背景值,结合灰色理论建立了硫化铜精矿品位的GM(1,1)预测模型,统计预测模型的平均相对误差。结果表明:基于灰色理论的预测模型精度较高,最小的平均相对误差为1. 88%,模型的预测效果较好,可作为预测铜精矿品位的一种新方式。  相似文献   

17.
以过硫酸钠(Na2S2O8)为氧化剂,研究了次级铜精矿中钼和硅的碱浸行为。探讨了搅拌速度、Na2S2O8和氢氧化钠(NaOH)的初始浓度、浸出时间、温度和液固比(L/S)等因素对次级铜精矿中钼和硅浸出行为的影响。结果表明:次级铜精矿的氧化碱浸较佳条件为:搅拌速度500 r?min-1,温度50 ℃,NaOH初始浓度2.0 mol?L-1,Na2S2O8初始浓度0.5 mol?L-1,液固比10/1 mL?g-1,浸出时间3.0 h。此条件下次级铜精矿中钼浸出率达96.85%,硅浸出率为28.87%,实现了高选择性分离铜和钼,铝和锌基本脱除,硅和硫部分脱除,获得了合格铜精矿  相似文献   

18.
浮选铜精矿加压酸浸工艺研究   总被引:2,自引:0,他引:2  
对云南某铜选厂浮选铜精矿进行了加压酸浸工艺研究, 确定其较佳工艺条件为: 硫酸初始浓度1.5 mol/L, 磨矿粒度-0.037 mm粒级占89%, 氧分压2 MPa, 浸取时间5 h, 浸取温度156 ℃, 表面活性剂木质素磺酸钠用量2.5 g/kg。在该工艺条件下, 铜精矿浸出率为79.15%。采用新型浸出剂ZK05, 铜精矿中铜的浸出率达到98%以上, 硫则通过浮选回收, 回收率约为60%。  相似文献   

19.
目前硫化镍矿的湿法冶金工艺大多存在着能耗较大、反应设备要求高等不足,同时软锰矿由于还原成本较高、污染较大未得到充分利用。为了改善现状,实现这两种矿物中有价金属的清洁高效回收,本研究基于两矿浸出法,采用常压酸浸工艺,以硫化镍精矿和软锰矿分别作为浸出过程中的氧化剂和还原剂,通过考察浸出条件对渣率和镍、锰、铜金属浸出率的影响,开展硫化镍精矿和软锰矿的协同浸出试验研究。试验结果表明:在浸出温度为110 ℃,硫化镍精矿与软锰矿质量比为1:1,初始酸度为210 g/L,液固为4:1,浸出时间为10 h的条件下,镍的浸出率为88.65%,锰的浸出率为93.26%,铜的浸出率为72.10%。浸出过程产生污染较小,浸出效果好,经济效益显著。该研究对硫化镍矿和软锰矿的湿法冶金具有重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号