首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究具有丢包的量化反馈系统的鲁棒预测控制器设计问题.所考虑的系统采用对数量化器,并给出了量化密度选择方法;网络中的丢包现象采用Bernoulli过程描述.主要目的是对控制信号进行量化,同时考虑量化后数据在网络传输过程中的丢包问题.设计了基于线性矩阵不等式(LMI)方法的鲁棒预测控制算法求解控制器,使得闭环系统渐近稳定,并满足一定的预测性能指标.最后通过仿真研究验证了所提出方法的有效性.  相似文献   

2.
饱和约束系统的鲁棒模型预测控制   总被引:2,自引:0,他引:2  
针对饱和约束系统提出了一种鲁棒模型预测控制算法,分别考虑了多面体不确定性和结构反馈不确定性.考虑无穷时域的最坏二次性能指标,通过采用带有饱和特性的反馈控制结构,将控制律的求解转化为一个在线的线性矩阵不等式优化问题.初始时刻优化问题的可行性保证了闭环控制系统的鲁棒稳定性.最后的仿真结果说明了算法的优越性.  相似文献   

3.
多面体不确定系统时滞依赖鲁棒预测控制   总被引:2,自引:0,他引:2  
将线性状态变换引入连续时间多面体不确定时滞系统中,利用线性矩阵不等式(LMI)方法,设计时滞相关型鲁棒预测控制器;通过适当选择Lyapunov函数,推导出闭环系统渐近稳定的充分条件,并且该条件是时滞相关的.仿真算例验证了该方法的有效性.  相似文献   

4.
麻莉莉  马静 《测控技术》2014,33(5):90-93
针对范数有界不确定性系统设计鲁棒弹性保性能控制器,将鲁棒弹性保性能控制器的设计问题转化为线性矩阵不等式(LMI)的可行解问题。以LMI的形式给出了鲁棒弹性保性能控制器存在的充分必要条件及控制器的设计步骤,并将该方法用于某型双转子涡喷发动机稳态双变量控制仿真,利用LMI/Matlab工具箱进行数值求解。既保持了鲁棒性也解决了传统鲁棒控制器的脆性问题,在系统和控制器增益存在摄动的情况下仍然保持稳定性和良好的性能指标。  相似文献   

5.
对预测控制中模型不确定性的处理一直是预测控制算法亟待解决的问题.考虑一类包含模型不确定性的控制对象模型,提出一种极大极小预测控制器设计方法.在滚动优化的每一步,考虑了状态变量不完全可测的情况,引入动态输出反馈的思想得到一个最坏条件下的性能指标的最优解,以最坏条件下的性能指标为求解优化问题的上界,通过线性矩阵不等式的方法求解凸优化问题.并从理论上证明了所设计的鲁棒预测控制器对不确定模型是稳定的.通过仿真算例的分析,证明了极大极小鲁棒预测控制器设计的有效性.  相似文献   

6.
针对一类具有执行器随机失效问题的离散线性系统,提出一种基于故障概率情况下的鲁棒预测容错切换控制方法。首先,将工业过程建立成新型多自由度状态空间模型,设计含有故障概率的容错控制器;其次,引入系统故障和其恢复时的随机概率,利用李雅普诺夫判据给出基于线性矩阵不等式形式的稳定性条件,再通过指数稳定的相关证明求解出不同执行器切换时的稳定条件,以保证系统故障时容错控制与无故障时常规控制间的切换;然后,控制器设计时还充分考虑了设定值变化时所产生的跟踪误差带来的影响。最后,通过仿真结果验证了所提方法的可行性。  相似文献   

7.
一种改进的鲁棒约束预测控制器的综合设计方法   总被引:1,自引:0,他引:1  
针对多包描述的不确定系统,提出一种新的鲁棒约束预测控制器.高线设计多包系统worst-case情况下性能最优的不变集,在线求解多包系统无穷时域性能指标的rain-max优化问题.设计方法采用了时变的终端约束集,扩大了初始可行域,并能获得较优的控制性能.仿真结果验证了该方法的有效性.  相似文献   

8.
基于LMI的多模型鲁棒预测控制   总被引:6,自引:2,他引:4       下载免费PDF全文
用线性矩阵不等式 (LMI)方法研究多模型鲁棒预测控制, 提出了状态反馈的综合方法, 并分析了闭环系统的可行性, 同时证明闭环系统渐近稳定. 在此基础上, 研究了带终端零状态的有限优化时域预测控制和无穷优化时域预测控制的性能, 证明了两者在性能上的一致性.  相似文献   

9.
针对多包描述线性离散不确定系统,提出一种在系统状态不可测时的直接约束鲁棒预测控制算法.将控制器与观测器综合设计,利用观测状态直接构造性能指标,通过求解无穷时域性能指标的最小最大优化问题,得到系统的最优状态反馈控制律.采用参数依赖Lyapunov函数,在满足输入和状态约束的情况下保证闭环系统稳定.仿真结果验证了算法的有效性.  相似文献   

10.
多输入/多输出系统动态矩阵控制鲁棒稳定性   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了基于脉冲响应模型的动态矩阵预测控制(DMC)算法,针对多输入、多输出(MIMO)系统脉冲响应模型的特点,利用脉冲响应系数误差矩阵范数平方和定义预测模型的模型误差,以线性矩阵不等式(LMI)的形式提出了DMC闭环鲁棒稳定充要条件,将DMC算法闭环稳定问题转换为一类线性矩阵不等式的可解问题.并且研究了模型误差与闭环系统稳定性之间的关系,给出了保证系统稳定条件下模型误差界的求取方法,通过求解一个线性矩阵不等式约束的凸优化问题得到保证闭环系统稳定的误差界.最后,利用算例对本文方法的有效性进行了验证.  相似文献   

11.
为了进一步提高汽轮机的动态控制性能,本文在阐述了汽轮机的数学模型的基础上。提出将鲁棒广义预测自校正控制算法应用于汽轮机的转速控制中,包括控制结构和控制器设计。仿真结果显示当核动力装置模型失配时,鲁棒广义预测控制能够提高汽轮机系统的鲁棒稳定性。表明所采用的鲁棒广义预测控制算法能够较好的控制汽轮机主要参数的输出,对蒸汽轮机模型的不确定性具有良好的适应性和鲁棒性。  相似文献   

12.
This paper proposes a fault-tolerant control scheme for linear systems with mismatched uncertainties which are assumed to be norm-bounded, affine and polytopic, respectively. The linear fractional transformation (LFT) and linear matrix inequality (LMI) techniques are introduced to handle the mismatched uncertainties, and the adaptive techniques are used to compensate actuator faults. By using the cone complementary linearisation algorithm, the resulting stability criteria are converted into solvable ones. Then, on the basis of Lyapunov stability theory, it is shown that the solutions to the closed-loop system and error system are uniformly bounded, especially, the states converge asymptotically to zero. Finally, simulations are given to illustrate the effectiveness and advantages of the proposed theoretical results.  相似文献   

13.
The success of the single-model MPC (SMPC) controller depends on the accuracy of the process model. Modeling errors cause sub-optimal control performance and may cause the control system to become closed-loop unstable. The goal of this paper is to examine the control performance of the robust MPC (RMPC) method proposed by Wang and Rawlings [34] on several illustrative examples. In this paper, we show the RMPC method successfully controls systems with time-varying uncertainties in the process gain, time constant and time delay and achieves offset-free non-zero set point tracking and non-zero disturbance rejection subject to input and output constraints.  相似文献   

14.
《Journal of Process Control》2014,24(8):1237-1246
In this paper, we develop a tube-based economic MPC framework for nonlinear systems subject to unknown but bounded disturbances. Instead of simply transferring the design procedure of tube-based stabilizing MPC to an economic MPC framework, we rather propose to consider the influence of the disturbance explicitly within the design of the MPC controller, which can lead to an improved closed-loop average performance. This will be done by using a specifically defined integral stage cost, which is the key feature of our proposed robust economic MPC algorithm. Furthermore, we show that the algorithm enjoys similar properties as a nominal economic MPC algorithm (i.e., without disturbances), in particular with respect to bounds on the asymptotic average performance of the resulting closed-loop system, as well as stability and optimal steady-state operation.  相似文献   

15.
Campo and Morari have derived a linear programming problem, with a potentially large number of constraints, which is equivalent to a min-max formulation for robust model-predictive control of linear systems. That formulation involves minimization, with respect to the controls, of the maximum, with respect to the system's impulse response (from a set of possible impulse responses), of the infinity norm of the error between the predicted and required system output sequences. Here an alternative linear programming problem is derived which has a smaller number of constraints and is therefore potentially more convenient for on-line control.  相似文献   

16.
High-speed applications impose a hard real-time constraint on the solution of a model predictive control (MPC) problem, which generally prevents the computation of the optimal control input. As a result, in most MPC implementations guarantees on feasibility and stability are sacrificed in order to achieve a real-time setting. In this paper we develop a real-time MPC approach for linear systems that provides these guarantees for arbitrary time constraints, allowing one to trade off computation time vs. performance. Stability is guaranteed by means of a constraint, enforcing that the resulting suboptimal MPC cost is a Lyapunov function. The key is then to guarantee feasibility in real-time, which is achieved by the proposed algorithm through a warm-starting technique in combination with robust MPC design. We address both regulation and tracking of piecewise constant references. As a main contribution of this paper, a new warm-start procedure together with a Lyapunov function for real-time tracking is presented. In addition to providing strong theoretical guarantees, the proposed method can be implemented at high sampling rates. Simulation examples demonstrate the effectiveness of the real-time scheme and show that computation times in the millisecond range can be achieved.  相似文献   

17.
This paper presents some computationally efficient algorithms for online tracking of set points in robust model predictive control context subject to state and input constraints. The nonlinear systems are represented by a linear model along with an additive nonlinear term which is locally Lipschitz. As an unstructured uncertainty, this term is replaced in the robust stability constraint by its Lipschitz coefficient. A scheduled control technique is employed to transfer the system to desired set points, given online, by designing local robust model predictive controllers. This scheme includes estimating the regions of feasibility and stability of the related equilibriums and online switching among the local controllers. The proposed optimisation problems for calculating the regions of feasibility and stability are defined as linear matrix inequalities that can be solved in polynomial time. The effectiveness of the proposed algorithms is illustrated by an example.  相似文献   

18.
19.
20.
Although distributed model predictive control (DMPC) has received significant attention in the literature, the robustness of DMPC with respect to model errors has not been explicitly addressed. In this paper, a novel online algorithm that deals explicitly with model errors for DMPC is proposed. The algorithm requires decomposing the entire system into N subsystems and solving N convex optimization problems to minimize an upper bound on a robust performance objective by using a time-varying state-feedback controller for each subsystem. Simulations examples were considered to illustrate the application of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号