首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combustion performance of polyamide‐6,6 (PA‐6,6) can be improved by the addition of red phosphorus provided it is intermolecularly cross‐linked upon irradiation with 60Co‐γ‐rays in the presence of triallyl cyanurate (TAC). At a content of 5 wt.‐% the latter promotes cross‐linking, both in the presence and absence of O2, by a factor of about 100. From a variety of combustion tests with samples containing red phosphorus and having been γ‐irradiated in the presence of TAC it turned out that an improved fire resistance of PA‐6,6 is achieved if the red phosphorus content is at least 7 wt.‐%. In this case test samples were self‐extinguishing and the UL 94 rating corresponded to V‐0. IR analysis of the solid residue brought about evidence for the reaction of red phosphorus with the polymer.  相似文献   

2.
Summary: Hydrogels of high‐molecular‐weight poly(ethylene oxide) (PEO) have been obtained in situ by applying a very simple procedure that involves UV cross‐linking of PEO in aqueous solution. The efficiency of the photoactivated cross‐linking of thin layers of PEO in aqueous solution in the presence of (4‐benzoylbenzyl) trimethylammonium chloride as a photoinitiator has been determined at room temperature and in a frozen state (?25 °C). It was found that the efficiency varies with the concentration of PEO solution, the molecular weight of PEO, and especially with the temperature. When the UV cross‐linking was performed in the frozen state, porous hydrogels with very high yield of gel fraction (above 90%) and high cross‐linking density were obtained. After drying the hydrogels, films of 50–150 μm thickness were prepared. The films swell extremely fast in water and act as asymmetric membranes.

SEM of a dried PEO hydrogel obtained by UV cross‐linking of an aqueous solution at room temperature.  相似文献   


3.
Summary: The combustion performance of poly(butylene terephthalate) (PBT) can be improved by the addition of red phosphorus provided it is intermolecularly cross‐linked upon irradiation with 60Co γ‐rays in the presence of triallyl cyanurate (TAC). At a content of 3 or 4 wt.‐% the latter significantly promotes cross‐linking in the presence of air. From combustion tests with samples containing red phosphorus (Pred) and having been γ‐irradiated in the presence of TAC it turned out that an improved fire resistance of PBT is achieved if the red phosphorus content is at least 12.5 wt.‐%. In this case test samples were self‐extinguishing and the UL 94 rating corresponded to V‐1. Product analysis and thermal gravimetric analysis revealed that Pred stimulates aromatization and charring. These processes involve the reaction of Pred with the polymer. 31P NMR spectroscopy revealed that the residue contained chemically bonded phosphorus.

Decomposition of anhydride groups resulting in phenyl radicals.  相似文献   


4.
To evaluate the efficiency of carboxymethylchitosan (CM‐chitosan)‐based hydrogels as barriers for reducing postsurgical adhesions, CM‐chitosan was synthesized to simplify the hydrogel‐making process, and the CM‐chitosan solutions were cross‐linked by using γ‐ray irradiation to create the desired hydrogels instead of using chemical cross‐linking reagents. The prepared CM‐chitosan hydrogels were characterized by a FTIR spectroscopy, swelling behavior, gel‐fraction content,and mechanical property such as gel strength of a hydrogel and the results showed a good swelling behavior and mechanical properties. Also, the radiation‐induced CM‐chitosan hydrogels significantly reduced and inhibited the postsurgical adhesions in the rat models. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
6.
Two series of hydrogels of poly[(acrylic acid)‐co‐(itaconic acid)] have been prepared by copolymerization in solution using tetrafunctional N,N′‐methylenebisacrylamide (NMBA) as cross‐linker. The resulting polymer was swollen in water at 298 K to yield homogenous transparent hydrogels. These hydrogels were characterized in terms of swelling and compression‐strain measurements. The influence of the comonomer composition and concentration of cross‐linking agent on volumetric swelling and the mechanical properties of these hydrogels were investigated. Inefficient cross‐linking is indicated by the small values of νe relative to the theoretical cross‐linking densities.

Dependence of measured affective cross‐linking density (νe) on the theoretical cross‐linking density (νt) for acrylic acid/itaconic acid hydrogels prepared at a fixed composition of AA80/AI20 wt.‐%, but at different concentrations of NMBA.  相似文献   


7.
Composite hydrogels of graphitic carbon nitride nanosheets (CNNS) and polyacrylamide (PAM) with superior UV absorption and visible transparence capabilities are reported. CNNS is employed not only as a photocatalytic initiator to trigger the polymerization of acrylamide, but also as a cross‐linker to 3D connected PAM chains via hydrogen bonds. The obtained CNNS/PAM hydrogels are highly moldable for preparing various forms, and have good mechanical properties, self‐healing ability, and photo‐stability. Furthermore, the composite hydrogels have a wide spectral range for UV absorption compared to conventional UV protective materials. Besides the complete screening of UVB (280–315 nm) in sun radiation, the CNNS/PAM hydrogel film can also filter >95% UVA radiation (315–400 nm) by regulating the coating thickness, meanwhile retaining a high visible transmittance. Therefore, the CNNS/PAM hydrogels have potential applications for shielding UV radiation. Additionally, this strategy provides a common and facile route to fabricate functional composite hydrogels via photo‐induced polymerization.  相似文献   

8.
9.
The kinetics of emulsion polymerization of monomers MMA/BA was studied to investigate the effect of cross‐linkable monomer PPGDA. The results showed that by the incorporation of PPGDA, rate constant of reaction decreased. The IR and differential scanning calorimetry were used to characterize the presence of PPGDA in the synthesized polymers. These polymers were coated on glass panels and cured at appropriate temperature. The results showed that the polymer containing 15 wt % PPGDA had minimum value of Fickian diffusion coefficient, thus showing highest level of cross‐linking among all the polymers studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A cross‐linked copolymer of acrylamide (AM) with 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) was prepared by solution polymerization. In this reaction, potassium persulfate (PPS) and N,N′‐methylenebisacrylamide (NMBA) were used as initiator and cross‐linker, respectively. This copolymer, poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMA), can absorb up to 1749 g/g of dry polymer in distilled water and 87 g/g of dry polymer in 0.9 wt % NaCl aqueous solution at room temperature. The PAMA also has excellent performance in absorbing pure alcohols. Its absorbencies in methanol and glycol are about 310 g/g and 660 g/g, respectively. The effects of various salt solutions on the swelling properties were studied systematically, and the relationship between the absorbency and the concentrations of the different salt solutions can be expressed as Q = kcn. Experimental results indicate that the absorbencies were stable at different water temperatures. The swelling rates of the copolymer in distilled water and a water/ethanol mixture (Vwater:Valcohol = 1:1) were also investigated, and the results showed that PAMA could absorb 992 g of distilled water per gram of dry polymer and 739 g of water/ethanol mixture per gram of dry polymer in five minutes. The PAMA has such good water retention at higher temperatures that the swollen gel can retain 71.6 and 49.5% of the maximum absorbency after being heated for 9 hours at 60 and 80 °C, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3481–3487, 2003  相似文献   

11.
L. Wu  D. Zhou  H. Wang  Q. Pan  J. Ran  T. Xu 《Fuel Cells》2015,15(1):189-195
For improving stability without sacrificing ionic conductivity, ionically cross‐linked proton conducting membranes are fabricated from Na+‐form sulfonated poly(phthalazinone ether sulfone kentone) (SPPESK) and H+‐formed sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Ionically acid‐base cross‐linking between sulfonic acid groups in SPPO and phthalazone groups in SPPESK impart the composite membranes the good miscibility and electrochemical performance. In particular, the composite membranes possess proton conductivity of 60–110 mS cm−1 at 30 °C. By controlling the protonation degree of SPPO within 40–100 %, the composite membranes with favorable cross‐linking degree are qualified for application in fuel cells. The maximum power density of the composite membrane reaches approximately 1100 mW cm−2 at the current density of 2800 mA cm−2 at 70 °C.  相似文献   

12.
The main aim of this work is the synthesis and characterization of cross‐linked chitosan systems. Chitosan hydrogels can be prepared by physical or chemical cross‐linking of polymer chains. Chemical cross‐linking, leading to the creation of hydrogel networks possessing improved mechanical properties and chemical stability, can be achieved using either synthetic agents or natural‐based agents. In this work, the cross‐linker Genipin, a naturally derived compound, was selected because of the lower acute toxicity compared to many other commonly used synthetic cross‐linking reagents. In particular, the chemical stabilization of chitosan through genipin cross‐linking molecules was performed and characterized by calorimetric analyses (differential scanning calorimetry), swelling measurements in different pHs, and ionic strength. The reaction kinetics was carried out by means of rheological measurements, and both the activation energy (Ea) and the reaction order (m) were calculated. The hydrogel analyses were carried out at different concentrations of genipin (GN1 and GN2). The results were used to evaluate the possibility to use the chemical cross‐linked chitosan–genipin hydrogel for biomedical applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42256.  相似文献   

13.
A dual cross‐linking design principle enables access to hydrogels with high strength, toughness, fast self‐recovery, and robust fatigue resistant properties. Imidazole (IMZ) containing random poly(acrylamide‐co‐vinylimidazole) based hydrogels are synthesized in the presence of Ni2+ ions with low density of chemical cross‐linking. The IMZ‐Ni2+ metal–ligand cross‐links act as sacrificial motifs to effectively dissipate energy during mechanical loading of the hydrogel. The hydrogel mechanical properties can be tuned by varying the mol% of vinylimidazole (VIMZ) in the copolymer and by changing the VIMZ/Ni2+ ratio. The resultant metallogels under optimal conditions (15 mol% VIMZ and VIMZ/Ni2+ = 2:1) show the best mechanical properties such as high tensile strength (750 kPa) and elastic modulus (190 kPa), combined with high fracture energy (1580 J m?2) and stretchability (800–900% strain). The hydrogels are pH responsive and the extent of energy dissipation can be drastically reduced by exposure to acidic pH. These hydrogels also exhibit excellent anti‐fatigue properties (complete recovery of dissipated energy within 10 min after ten successive loading–unloading cycles at 400% strain), high compressive strength without fracture (17 MPa at 96% strain), and self‐healing capability due to the reversible dissociation and re‐association of the metal ion mediated cross‐links.  相似文献   

14.
15.
Poly(PEG200 maleate) was synthesized as a new type crosslinkable prepolymer and the semi‐interpenetrating polymer network (semi‐IPN) gel electrolytes were prepared by means of thermal polymerization. Their intrinsic properties were characterized by FTIR spectroscopy, differential scanning calorimetry (DSC), X‐ray diffractions (XRD), scanning electron microscopy, alternating current impedance (AC impedance), and linear sweep voltammetry. The prepared polymer hosts are transparent and have good mechanical properties. The results of DSC and XRD confirm that the prepared hosts are in amorphous state and they can hold enough liquid electrolytes, which is favorable for Li+ ions to transport via both the absorbed liquid electrolyte and the gel of the entire systems. The semi‐IPN gel electrolytes exhibit high ionic conductivity on the order of 10?3 S cm?1. Their electrochemical stability up to +4.6 V against Li+/Li also makes them potential candidates for application as polymer electrolytes in devices. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

16.
A recombinant Escherichia coli strain was constructed which efficiently expressed the enantioselective nitrilase from Alcaligenes faecalis DSMZ 30030 as a hisitidine‐tagged enzyme variant under the control of a rhamnose inducible promoter. The enzyme was purified from cell extracts and used for the preparation of cross‐linked enzyme aggregates (CLEAs). The conditions for the preparation of the CLEAs were optimized using various organic solvents and cross‐linking agents and a procedure was developed which combined a precipitation with 85 % (v/v) isopropyl alcohol and a cross‐linking with 30 mM glutaraldehyde. Thus, about 80 % of the initial nitrilase activity could be incorporated into the CLEAs. The hydrolysis of racemic mandelonitrile to (R)‐mandelic acid was compared between the soluble nitrilase preparations and their CLEAs (nit‐CLEAs). The nitrilase activity in the CLEAs was at 30 °C and 60 °C about 5 times more stable than in the soluble preparations. The CLEAs could be reused 5 times with only about 10 % reduction in activity. The enantioselectivity of the nitrilase for the formation of (R)‐mandelic acid from racemic mandelonitrile decreased for both preparations with increasing temperatures (10 °C to 50 °C), but this effect was significantly less pronounced for the CLEAs. A detailed analysis of solvent effects on nitrilase enantioselectivity allowed thermodynamic insights into contributions from free energy component (activation enthalpy and entropy) to chiral preference of nitrilase in such non conventional media.  相似文献   

17.
In an effort to create an in situ physically and chemically cross‐linked hydrogel for in vivo applications, N‐isopropylacrylamide (NIPAAm) was copolymerized with poly(ethylene glycol)‐monoacrylate (PEG‐monoacrylate) and then the hydroxyl terminus of the PEG was further modified with acryloyl chloride to form poly(NIPAAm‐co‐PEG) with acrylate terminated pendant groups. In addition to physically gelling with temperature changes, when mixed with a multi‐thiol compound such as pentaerythritol tetrakis 3‐mercaptopropionate (QT) in phosphate buffer saline solution of pH 7.4, this polymer formed a chemical gel via a Michael‐type addition reaction. The chemical gelation time of the polymer was affected by mixing time; swelling of the copolymer solutions was temperature dependant. Because of its unique gelation properties, this material may be better suited for long‐term functional replacement applications than other thermo‐sensitive physical gels. Also, the PEG content of this material may render it more biocompatible than similar HEMA‐based precursors in previous simultaneous chemically and physically gelling materials. With its improved mechanical strength and biocompatibility, this material could potentially be applied as a thermally gelling injectable biomaterial for aneurysm or arteriovenous malformation (AVM) occlusion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Antifogging and frost‐resistant coatings can be used in a wide range of applications and enable high light transmission through substrates even under changes in environmental conditions. In this study, surface confined and cross‐linked antifogging thin films are fabricated on glass slides via catalyst induced cross‐linking (CIC), which has been recently introduced as an easy and efficient cross‐linking methodology. Four different poly(ethylene glycol) (PEG)‐based polymers with different hydrophilicity are synthesized and used to prepare films via CIC. Films prepared from the most hydrophilic PEG‐based polymers display the best antifogging performances when exposed to a temperature change from −20 to 22 °C. Furthermore, several parameters including cross‐linking density, surface roughness, hydrophobicity, and exposure time are also evaluated in terms of film transparency. Through these measurements, it is determined that, more loosely cross‐linked films retain antifogging ability for longer time periods due to higher film swellability as compared to, more highly cross‐linked films. This study signifies the crucial role of the film cross‐linking density and hydrophilicity on the antifogging function.

  相似文献   


19.
In this study we have optimized the conditions to precipitate and cross‐link the enzyme chloroperoxidase (EC 1.11.1.10) from Caldariomyces fumago (CPO) using 1,2‐dimethoxyethane as the precipitating agent. The coprecipitation of the enzyme with albumin and pentaethylenehexamine was needed for optimum results, presumably due to the low number of lysines available in CPO. The enzyme was immobilized with an activity recovery of 68%. The cross‐linked enzyme aggregate showed higher temperature and pH stability, and better hydrogen peroxide tolerance than the free enzyme.  相似文献   

20.
Thermoresponsive hydrogels based on N‐isopropylacrylamide and N‐vinylimidazole were synthesized, and their swelling–deswelling behavior was studied as a function of the total monomer concentration. For copolymeric structures with better thermoresponsive properties with respect to poly(N‐isopropylacrylamide‐coN‐vinylimidazole) hydrogels, these hydrogels were protonated with HCl and HNO3, and the copolymer behaviors were compared with those of the unprotonated hydrogels. The temperature was changed from 4 to 70°C at fixed pHs and total ionic strengths. The equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all the hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1619–1624, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号