首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overall quality of virgin olive oil (VOO) is closely related to its oxidative stability that is usually evaluated through the stability index measured by the Rancimat apparatus. Quality characteristics and also pro‐oxidant and antioxidant content for 52 Greek VOO samples (Koroneiki cv) were used to build up a model capable of predicting stability. Collinearity diagnostics, variable selection, and regression analysis were applied to the experimental data to locate the contribution of each parameter to the keeping quality of the samples. The predictive ability of the model was confirmed for a second VOO ample set of the same cultivar. It was found that except for the peroxide value, which negatively influences the stability, other important parameters were α‐tocopherol, total polar phenol and total chlorophyll content. It is concluded that the colorimetric determination of total polar phenols, the spectrometric determination of total chlorophylls and the high‐performance liquid chromatography analysis of α‐tocopherol, not presently included in the established methods of official analysis, can be used for a better evaluation of VOO quality. These parameters, which can be easily adopted as routine methods by the industry, seem to be of utmost importance for shelf life prediction and expiration dating if applied for the promotion of the most competitive products in the international olive oil market.  相似文献   

2.
Phenolic compounds have a high importance in olive oil because of their effect on shelf life and sensory properties. This study reports on the HPLC profiles of the phenolic compounds of virgin olive oils obtained from Arbequina olives from the harvesting in a super‐intensive orchard under a linear irrigation system. In addition, phenolic content, carotenoid and chlorophyllic pigments, and oxidative stability were analyzed. Total phenol content and 3,4‐DHPEA‐EDA increased up to a maximum throughout the ripening process. The simple phenols tyrosol and hydroxytyrosol acetate increased throughout the ripening process, however, there was not found a clear trend in hydroxytyrosol content. Minor constituents such as vanillic acid and p‐coumaric acid increased up to a maximum and then decreased, since vanillin decreased progressively throughout the time of harvest. 3,4‐DHPEA‐EDA and lignans were present in considerable amounts in the studied samples, while oleuropein aglycone was present in a low amount. Total phenol content and oil stability followed the same trend throughout the study, so a very good correlation was established between them. Total secoiridoids and, specifically, 3,4‐DHPEA‐EDA seemed to be responsible for oil stability. The pigment content decreased during ripening, and not a positive correlation was found between pigments and oil stability. Practical applications : The results can be used to determine the best time for harvesting in order to obtain olive oils with different phenols and pigment contents. This is important for sensory characteristics of the olive oils and also for olive oil stability.  相似文献   

3.
Phenolic compounds represent a unique and functional part of the polar fraction of virgin olive oils. Many different approaches for the analysis of these compounds have been published, which has led to ambiguous results that are difficult to compare. In order to explain the controversial data reported in the literature, extraction techniques (solid‐phase extraction, SPE, and liquid‐liquid extraction, LLE), methods of analysis (HPLC and colorimetric assay) and quantification methods have been re‐investigated with genuine olive oil phenols. The optimized LLE system led to high recovery of the nine major olive oil phenolics (93%) and, in addition, was at least as good as the SPE technique in view of costs, solvent and sample consumption, and analysis time. SPE was shown to be problematic because of the selectivity towards the individual phenolics, particularly the aglycone‐type ones. The proposed LLE/HPLC method was compared with the traditional colorimetric assay (Folin‐Ciocalteu method) by analyzing 23 samples of virgin olive oils. A strong correlation between both methods has been found, suggesting that the colorimetric assay is reasonably valid for a rough prediction of the total phenolic content. In the literature, the level of phenolics is expressed in several different units (reference compound equivalents in case of colorimetric measurements and ppm in HPLC measurements). As these units can differ in orders of magnitude, it is necessary to convert the data to a common base before comparing or combining them.  相似文献   

4.
Activity of the polyphenol oxidase (PPO) from eggplant fruit (Solanum melongena L.) on phenolic compounds of an extra virgin olive oil (EVOO) was studied. In standardized reaction solutions, the eggplant PPO, isolated in the laboratory, depleted completely chlorogenic and caffeic acids, oleuropein, and verbascoside, while the levels of hydroxytyrosol reduced by half. Conversely, no activity of the PPO was observed on the gallic and protocatechuic acids nor on mono‐phenols, such as tyrosol and the p‐coumaric, o‐coumaric, and ferulic acids. PPO activity on phenols extracted from eggplant fruit and EVOO confirmed the enzyme substrate specificity and caused a significant decrease in the measure of total phenols and o‐diphenols. Similarly, PPO crude extract caused a significant decrease of polyphenols directly in the EVOO. Moreover, maximum degradation of EVOO polyphenols was observed when olive oil was homogenized with eggplant fruit pulp to form a cream‐like purée. In fact, immediately after the preparation, total phenols and o‐diphenols of the olive oil recovered from the eggplant‐oil purée were decreased by ~80% and 100% compared to those of the initial EVOO. As a consequence, the oxidative stability of the recovered oil was ~60% lower than that of the initial EVOO. In conclusion, in the preparation of vegetable preserves, a residual activity of phenol oxidase may adversely affect the quality and shelf life of the extra virgin olive oil used as covering.  相似文献   

5.
The antioxidant properties of some single components and the total antioxidant activity of extra‐virgin olive oil have been evaluated by the oxygen radical absorbance capacity (ORAC) method. The total ORAC of the extra‐virgin olive oil was found to be positively correlated with the concentration of total polyphenols, which are important to the shelf life of the product. Among the single phenolic compounds studied, gallic acid showed a higher ORAC than caffeic acid and oleuropein, while among the derivates of oleuropein, hydroxytyrosol was found to be the most active compound among all the phenols studied. The total ORAC of commercial olive oils differed according to the concentration of total polyphenols. The total ORAC of extra‐virgin olive oil was constant during 1 year of storage in rational conditions, whereas it worsened dramatically in olive oil damaged by the lipase‐producing yeast Williopsis californica or by lipase from Pseudomonas spp. The study accomplished on the oily fraction of the fruits before harvesting demonstrated that the total ORAC of the oil of under‐ripe green olives is higher compared to that shown by mature fruits; therefore, through the choice of the harvesting time, it is possible to define also the future content of polyphenols of the oil. The total ORAC test, together with other analyses, can be considered as a qualitative parameter that can contribute to the expression of technological and health virtues of extra‐virgin olive oil.  相似文献   

6.
The characterization of virgin olive oils from six Tunisian cultivars, namely Chétoui, Ain Jarboua, Jarboui, Regregui, Rekhami and Neb Jmel, grown in Nebeur (a region of the Kef) was carried out. These cultivars dominate their natural habitats, but with the exception of the Chétoui cultivar they are only scattered throughout the nation. Several analytical parameters were evaluated; these include quality index, fatty acid composition, chlorophylls, carotenoids, sterols, α‐tocopherol and phenolic compounds. Their relationship with oxidative stability was also tested. The main phenols found were tyrosol, hydroxytyrosol, the dialdehydic form of elenolic acid linked to tyrosol and hydroxytyrosol, oleuropein aglycon and pinoresinol. These phenolic compounds, the colorimetric total phenol content and o‐diphenols showed significant correlations with oxidative stability. Furthermore, most of the analytical parameters of the oils that were determined in this study were greatly influenced by genetic factors (cultivar).  相似文献   

7.
Several studies have suggested that the phenolic fraction plays an important role during storage and therefore in the shelf life of virgin olive oil. This investigation examines the effect of freezing olives (–18 °C) before processing into oil on the transfer of the phenolic compounds into the subsequent oil, and the consequential changes in oxidative stability. Oil samples obtained from frozen olives (24 h at –18 °C), crushed with and without preliminary thawing, were compared to a control sample; both oils were obtained using a two‐phase low‐scale mill. The oxidative stability in different samples was assessed in terms of primary and secondary oxidation products as measured by peroxide values and oxidative stability index times, respectively. The quality of the oil samples was also checked through the percentage of free acidity and the phenolic content. Phenols were determined by both spectrophotometric assays (total phenols and o‐diphenols) and HPLC‐DAD/MSD. The antiradical capacity of the phenolic fraction was determined by DPPH and ABTS spectrophotometric tests. These analyses showed that thawing of olives before oil extraction led to a significant loss of oxidative stability and phenols; in contrast, samples obtained from frozen olives that were not thawed before crushing showed qualitative characteristics similar to control samples.  相似文献   

8.
The antioxidant effects of hydrophilic phenols and tocopherols on the oxidative stability in virgin olive oils and in purified olive oil have been evaluated. Total hydrophilic phenols and the oleosidic forms of 3,4-dihydroxyphenolethanol (3,4-DHPEA) were correlated (r=0.97) with the oxidative stability of virgin olive oil. On the contrary, tocopherols showed low correlation (r=0.05). Purified olive oil with the dialdehydic form of elenolic acid linked to 3,4-DHPEA, an isomer of oleuropeine aglycon, and 3,4-DHPEA had good oxidative stability. A synergistic effect was observed in the mixture of 3,4-DHPEA and its oleosidic forms with α-tocopherol in purified olive oil by the Rancimat method at 120°C.  相似文献   

9.
Refined olive oil and olive‐pomace oil were enriched with olive leaf phenolic compounds in order to enhance its quality and bring it closer to virgin olive oil. The changes that occurred in the concentrations of pure oleuropein, oleuropein aglycone, hydroxytyrosol acetyl and α‐tocopherol at 400 µg/kg of oil during the storage of refined olive oil and olive‐pomace oil under accelerated conditions (50 °C) were investigated. In a period of 4 months, α‐tocopherol decomposed by 75% whereas less than 40% of the phenols were lost. During storage, enzymatic olive leaf extract hydrolysate that contains two major compounds, hydroxytyrosol and oleuropein aglycone showed the highest antioxidant activity and the lowest detected stability, followed by oleuropein. The oleuropein in olive leaf extracts exhibited similar degradation profiles, reducing by 60–50% and 80% for the olive oil and olive‐pomace oil in 6 months, respectively. The acetylated extract, however, displayed a loss of 10 and 5% in olive oil and olive‐pomace oil, respectively. In the fatty acid composition, an increase in oleic acid and a decrease in linoleic acid were observed. The antiradical activities of the olive oil and olive‐pomace oil enriched with olive leaf phenolic compounds at 400 ppm showed that enzymatic hydrolysate extract had the highest protective effect against oil oxidation. Based on the Rancimat method, the oils with added leaf enzymatic hydrolysate extract had the lowest peroxide value and the highest stability. After 6 months of storage and at 120 °C, the oxidative resistance of refined olive oil and olive‐pomace oil reached 0.71 and 0.89 h, respectively, whereas that of the non‐enriched samples fell to zero.  相似文献   

10.
The main objective of this study was to evaluate the effect of different deficit irrigation treatments (control, regulated deficit irrigation [RDI]‐1, RDI‐2, and RDI‐3) on the phenolic profile of the olive paste and oil content. Irrigation treatments with more stress water led to a considerable increase in the phenolic compounds of olive paste, especially in oleuropein (60.24%), hydroxytyrosol (82%), tyrosol (195%), and verbascoside (223%) compared to control. A significant increase in the content of total flavonoids and phenolic acids was also observed for these samples. In virgin olive oils (VOO) elaborated from the most stressed olive trees (RDI‐2 and RDI‐3), a noticeable increase in phenolic substances with antioxidant properties (oleuropein, hydroxytyrosol, tyrosol, secoiridoid derivatives, and o‐vanillin) was observed. Consequently, water stress conditions improved antioxidant activity of VOO.  相似文献   

11.
A total of 287 olive lots and 161 olive oil samples were analyzed for fat content, moisture and free acidity, using a Fourier transform near‐infrared (FT‐NIR) instrument located in an industrial mill. Samples having a wide range of both reference values and olive lot sizes (from <0.5 to >4 t) were collected at three industrial mill plants, located in the same Italian region, which utilize different technological equipment for virgin olive oil production. Olive paste spectra were acquired in diffuse reflectance, while oil samples were measured in transmission. Calibration models for oil content and moisture of olives as well as free acidity of virgin olive oils were developed using partial least squares (PLS) regression, first derivative and straight line subtraction. Results of calibration and validation of the PLS models selected were good. The PLS results indicate good similarity between data obtained from FT‐NIR and reference laboratory methods, allowing a rapid and less expensive screening analysis. Unfortunately, the correlation between the oil yield values recorded for all olive lots at the industrial mills and the oil content predicted by FT‐NIR was not satisfactory (R2 = 0.605).  相似文献   

12.
We performed a survey on the yield, quality, and chemical characteristics of virgin olive oils from two olive varieties in Croatian Istria: Frantoio and Ascolana tenera, on Cherry leafroll virus‐infected and virus‐noninfected trees and on two harvest dates. Free acidity, peroxide value, specific spectrophotometric absorptions at 232 and 270 nm, fatty acid composition, total phenols, o‐diphenols, oil color, and pigments were determined. Infected olives had lower oil yield and maturity index versus healthy ones. Oils from infected fruits had significant lower value of K232 and K270 and very elevated total phenols content compared to those obtained from healthy olives. Infected Frantoio gave a lower content of o‐diphenols than the healthy ones, which is in contrast to infected Ascolana that had higher values. The aim of this study is to determine the chemical changes in virgin olive oils from healthy and infected trees related to virus influence. According to our knowledge, this is the first survey on the possible influence of viruses on olive fruits, oil yield, and virgin olive oil quality. Practical applications : There are only few papers which analyze the influence of viruses on crops (especially influence on wine quality) and their effects on yield or other agronomic parameters. This work evaluates for the first time the impact of Cherry leafroll virus on the quality of virgin olive oil obtained from Frantoio and A. tenera varieties in terms of basic parameters related to the hydrolitic and oxidative status, content in antioxidant compounds, and in pigments as well as in fatty acid composition.  相似文献   

13.
The total polar fraction and individual phenols present in virgin olive oil were tested for their antioxidant effect in refined olive oil. Hydroxytyrosol and caffeic acid showed protection factors greater than BHT. Protocatechuic and syringic acid were also found to have antioxidant activity. Tyrosol, p-hydroxyphenylacetic acid, o-coumaric acid, p-coumaric acid, p-hydroxybenzoic acid and vanillic acid had very little or no effect, and their contribution to the stability of the oil is negligible.  相似文献   

14.
By definition, virgin olive oil is consumed unrefined, although a great proportion of the olive oil produced has to be refined to render it edible. Phenolic compounds are among the substances eliminated during the refining process; in the present work these were characterized by HPLC, and their evolution during the different refining steps was studied. The complete refining process removed most polyphenols from oils, but the behavior of individual compounds at each step also was observed. o-Diphenols (hydroxytyrosol, catechol, and hydroxytyrosol acetate) and flavonoids (luteolin and apigenin) were eliminated first during the alkaline treatment. Tyrosol and 4-ethylphenol remained in the oil until the deodorization step. A large amount of phenolic compounds was discovered in the refining by-products such as soapstocks and deodorization distillates. In the latter streams, the concentrations of tyrosol and 4-ethylphenol reached up to 149 and 3720 mg/kg by-product, respectively. This high level of 4-ethylphenol and its well-known strong off-odor can interfere during further processing of the deodorization distillates, and this must be taken into account when deciding what is to become of them. Similarly, the results of this work open the possibility of recovering phenolic compounds from the “second centrifugation olive oils” by adding a new washing step prior to the refining process. By including this new step, the most polar polyphenols, hydroxytyrosol and tyrosol, will diffuse from oil to water and a concentration of up to 1400 mg/L of hydroxytyrosol may be achieved.  相似文献   

15.
Research has been carried out to ascertain the influence of different centrifugal decanters employed in olive process on oil yields and qualitative characteristics and composition of volatile compounds of virgin olive oil. Tests were performed in an olive oil mill equipped with centrifugal decanters at two or three‐phases. Results show that oil yields were similar and oils extracted from good‐quality olives do not differ in free fatty acids, peroxide value, UV absorptions and organoleptic assessment. Total phenols and o‐diphenols content as well as induction time values are higher in oils obtained by the centrifugal decanter at two‐phases, because it requires less quantity of water added to olive paste in comparison to the three‐phases centrifugal decanter. The amount of water added determines the dilution of the aqueous phase and lowers the concentration of the phenolic substances more soluble in vegetable waste water. Due to the partition equilibrium law the concentration of the same substances consequently diminishes in the oil. In this research, the coefficient of the partition equilibrium of total phenols between oil and vegetable water has been calculated and discussed. No significant difference occurred, due to the different decanters employed, in the average values of the volatile components of the head‐space of oils.  相似文献   

16.
There is a need to verify the quality of organically produced olive oils and to compare them to conventional ones. The objective of this study was to assess possible differences in nutritional quality between agronomic practices in Picual and Hojiblanca olive oil varieties at different stages of olive ripeness. The results showed that organic versus conventional cultivation did not consistently affect acidity, peroxide index or spectrophotometric constants of the virgin olive oils considered in this study. On the contrary, phenol content, oxidative stability, tocopherol content and fatty acid composition were affected by the agronomical practices. Principal component analysis indicated that linolenic acid and β‐tocopherol were mainly responsible for discriminating Hojiblanca organic oils, whereas total phenols, palmitoleic acid and α‐tocopherol were the major contributors to differentiating Picual conventional oils. Lignoceric and stearic acids were related to oils from unripe and ripe olive fruits, respectively. Long‐term experiments are required to confirm these results.  相似文献   

17.
Effective lipophilic antioxidants were prepared by non‐aqueous enzymatic transesterification of plant phenols with cuphea oil. Tyrosol and hydroxytyrosol, abundantly available phenols from olive oil processing byproduct, were found to be predominately acylated with capric acid derived from the triglyceride fraction of the Cuphea germplasm line PSR 23 (Cuphea Viscosissima × C. lanceolata). The reaction was complete within 2 h, with a >97% conversion of either phenol using immobilized Candida antarctica lipase B. The reaction products were good solvents for tyrosol or hydroxytyrosol, suggesting a facile manufacturing route not dependent on use of organic solvents. Phenolic derivatives were assessed for their ability to serve as antioxidants for preventing the oxidation of polyunsaturated fatty acyl groups. The antioxidant capacities of the cuphea‐derived fatty acyl derivatives of tyrosol or hydroxytyrosol were the same as their respective derivatives prepared from decanoic acid. These biobased antioxidants may improve the oxidative stability of sensitive fatty acids in food applications. Practical applications: A new biobased antioxidant was created for the food industry. Foods can contain fats and oils that are susceptible to deterioration during storage, which can limit product quality and shelf‐life. Synthetic antioxidants can slow the spoilage process, although there are limitations to how much can be added to foods. The food industry is interested in using natural ingredients to solve storage stability problems. We found that the oil from the plant Cuphea, cultivated in the upper Midwest region of the US, is very useful for modifying olive oil waste molecules to create antioxidants for use in foods. The developed process would be suitable for commercial production. This research creates a new commercial use for a specialty oil seed crop, expands the market for cuphea oil, and has developed two novel antioxidants to help the food industry improve food quality.  相似文献   

18.
Wiseman SA  Tijburg LB  van de Put FH 《Lipids》2002,37(11):1053-1057
An animal feeding trial was conducted to investigate whether olive oil phenolics can act as functional antioxidants in vivo. To this end, hamsters were exposed for a period of 5 wk to a dietary regime with either a phenol-rich extra virgin olive oil or extra virgin olive oil from which phenols were removed by ethanol/water-washing. The original oil used in the high olive phenol diet was also used for the preparation of the low phenol diet in order to keep the FA compositions exactly the same. In addition, the vitamin E content was kept identical in both diets. This careful preparation of the diets was undertaken in order to prevent these factors from influencing the antioxidative status in plasma and LDL. Removal of olive oil phenols was shown to reduce both the vitamin E level in plasma and the resistance of LDL to ex vivo oxidation. The results of this study support the idea that extra virgin olive oil phenols improve the antioxidant defense system in plasma by sparing the consumption of vitamin E under normal physiological circumstances.  相似文献   

19.
The induction period (IP), determined using accelerated methods such as the Rancimat test, is a parameter that has been used to predict the shelf life of virgin olive oil. The oxygen radical absorbance capacity (ORAC) has recently been proposed as a quality index of virgin olive oil because it measures the efficiency of phenolic compounds in the protection against peroxyl radicals. This study aims to investigate relationships between the ORAC and IP values and proposes ORAC as a new parameter of virgin olive oil stability. The concentrations of phenolics, o-diphenols, tocopherol, β-carotene, lutein, and ORAC and IP values were determined in 33 virgin olive oils. Regression analyses showed that both ORAC and IP values correlate with total phenols and o-diphenols with highly significant indices, whereas the correlations of both ORAC and IP with tocopherols, β-carotene, and lutein were not significant. The ORAC values correlate with the IP values with low but significant indices (R=0.42; P<0.02). The results confirm the key role of phenolic compounds in accounting for the shelf life of virgin olive oil and suggest that the ORAC parameter may be used as a new index of quality and stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号