首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以NACA0018为基准翼型,采用Fluent数值模拟方法对比研究了襟翼相对长度(分别取0.2、0.3和0.4)和翼缝相对宽度(分别取1.0%、1.5%和2.0%)对翼型流场结构及升、阻力特性的影响,并着重分析襟翼相对长度对翼型气动性能的影响.结果表明:由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能;襟翼翼型的失速攻角在研究范围内均大于基准翼型;在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均大于基准翼型,但升力系数的最大值均大于基准翼型;随着襟翼相对长度的增大,翼型失速攻角逐渐减小;当攻角接近翼型失速攻角时,升力系数先增大后减小;襟翼相对长度相同时,随着翼缝相对宽度的增大,升力系数逐渐减小.  相似文献   

2.
以NACA0018为基准翼型,采用Fluent数值模拟的方法,对比研究了襟翼相对长度和翼缝相对宽度对翼型流场结构及升、阻力特性的影响;分别选取襟翼相对长度分别为0.2、0.3和0.4和翼缝相对宽度分别为1.0%、1.5%以及2.0%,着重分析翼缝相对宽度对翼型气动性能的影响。数值结果表明,由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能。襟翼翼型的失速攻角在此次研究范围内均大于基准翼型,在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均高于基准翼型,但升力系数的最大值均高于基准翼型;随着襟翼相对长度增大,翼型临界攻角逐渐减小;在攻角接近翼型失速攻角时,升力系数先增大后减小;襟翼长度相同时,随着翼缝相对宽度的增大,升力系数逐渐减小。在翼缝流体入口端,主翼末端存在一个涡,随着翼缝相对宽度增大,该涡流范围逐渐扩大;在襟翼前端有局部的压力升高,随着翼缝相对宽度增大,该局部高压范围扩大。  相似文献   

3.
戴丽萍  陈柳明  康顺 《汽轮机技术》2012,54(4):241-243,252
为了分析襟翼对风力机翼型气动性能的影响,采用FLUENT软件对带有襟翼和不带襟翼的NACA4412翼型进行了数值模拟。首先通过不同计算模型结果与实验数值的对比,确定了适用于翼型计算的数值边界条件和湍流模型;其次,通过比较无襟翼和1%、2%、4%弦长3种襟翼高度的翼型气动性能和流场的压力分布等,对襟翼对流场的影响和增升原理进行了分析。结果表明:在-5°~+17°攻角范围内,Gurney均可有效增加翼型升力,并且襟翼高度越大增升越明显,但同时阻力也会有所增加,受二者共同作用在小攻角时升阻比变化不大,大攻角时升阻比明显增加。襟翼后卡门涡街代表的低压区和襟翼前角涡代表的高压区的形成是增加翼型升力的根本原因。  相似文献   

4.
以NACA0018为基准翼型,采用Fluent数值模拟的方法,对比研究了襟翼几何长度对翼型流场结构及升、阻力特性的影响;分别选取襟翼几何长度分别为0.2、0.3和0.4,翼缝相对宽度为1.5%,分析了襟翼几何长度对翼型气动性能的影响。结果表明,由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能。襟翼翼型的失速攻角在此次研究范围内均大于基准翼型,在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均高于基准翼型,但升力系数的最大值均高于基准翼型。  相似文献   

5.
为了研究襟翼结构对风力机翼型气动性能的影响,选用NACA0012翼型,建立了翼型加装襟翼的二维计算模型,使用计算流体力学软件Fluent求解定常、不可压缩雷诺平均的N-S方程和Spalart-Allmaras单方程湍流模型,分析了典型的NACA0012翼型添加不同几何形状襟翼在0°~18°攻角α范围内的气动特性。通过计算表明:在风力机翼型上添加不同结构襟翼,能够提高翼型的有效升力系数,添加同样高度和厚度的三角形襟翼比添加矩形襟翼时的升力系数要大,而阻力变化甚小;因此,选择适当的几何形状襟翼不仅能起到增升效果且能相应的节省材料从而改善其经济性。  相似文献   

6.
《动力工程学报》2019,(8):654-660
为分析Gurney襟翼对风力机翼型气动性能和气动噪声特性的影响,利用Fluent软件中的LES模型计算攻角为4°~20°时原始翼型和带有不同高度Gurney襟翼翼型的气动性能和流场分布,并基于FW-H声类比方法,利用Acoustics模块精确求解远场气动噪声。结果表明:升力系数大于0.8时,Gurney襟翼能明显增大翼型升力系数,但阻力系数也显著增大;襟翼高度小于3%弦长时,失速攻角明显增大;襟翼高度大于3%弦长时,升力系数增幅减小,阻力系数增幅增大,且气动噪声急剧增加,翼型声辐射特征呈现偶极子声场的特点。  相似文献   

7.
为研究格尼襟翼对风力机专用翼型DU93-W-210气动性能的影响,在有/无格尼襟翼情况下进行风洞实验(雷诺数为1×10~6)。实验研究高度为1.5%C、2.0%C、2.5%C格尼襟翼增升效果。研究表明:格尼襟翼能有效提高翼型的升力系数,襟翼高度越高,升力系数越大,相应的阻力系数也有所增大。格尼襟翼在中、高升力系数情况下效果较好;高度为1.5%C的格尼襟翼可获得较大升阻比。为了进一步减少阻力,对平板格尼襟翼开30°、45°、60°锯齿。结果表明,平板襟翼开锯齿能减小阻力;30°锯齿襟翼能在较大范围内增大升阻比,增升效果最佳。  相似文献   

8.
为了分析不同襟翼结构和安装位置对翼型附近流场的变化情况,以NACA0012翼型为研究对象,建立加装不同襟翼翼型的二维计算模型,使用计算流体力学软件Fluent求解定常、不可压缩雷诺平均的N-S方程并且采用Spalart-Allmaras湍流模型计算翼型在0°到18°攻角α范围下翼型升阻力系数、升阻比、表面压力系数以及翼型附近的流场流线分布,分析翼型尾缘附近不同位置处添加不同襟翼结构时其流场流动特性。结果表明:对于添加襟翼后各翼型,由于襟翼的存在,整个翼型形状发生改变,使翼型与襟翼连接处流场发生不同程度的突变,导致翼型尾缘附近的流场、压力场以及上下表面压力分布发生了显著的变化,尾缘Gurney襟翼突变程度大,流体较易发生分离;尾缘三角襟翼有个倾斜过程,减缓了流体分离,从而延迟了分离流动的攻角。小攻角(0°~4°)下尾缘三角襟翼的翼型有显著的增生效果。  相似文献   

9.
采用Fluent数值模拟的方法,以NACA0018对称翼型为基准翼型,分析了尾缘襟翼翼缝相对宽度不同时,襟翼动态摆动对翼型流场以及升阻力特性分析。选取襟翼相对长度为0.2,襟翼翼缝相对宽度分别为1.0%、1.5%和2.0%,当襟翼最大摆角θ为15°时,分析翼型动态气动性能。数值结果分析表明:襟翼的摆动导致原本对称的翼型不再是对称翼型,改变了翼型的弯度,翼型升力和阻力系数的最大值均增大;相同摆角下,翼缝相对宽度越大,其翼型升力系数值愈大;襟翼在摆角θ为10°~15°时,在襟翼下表面出现尾缘回流涡;当襟翼摆角θ为-10°~-15°时,襟翼上表面出现回流涡,且随着襟翼摆角的增大,该回流涡范围逐渐扩大。  相似文献   

10.
以NACA0012翼型为基础建立尾缘襟翼模型,采用多学科设计优化框架软件Isight、CFD(计算流体力学)软件Fluent(CFD软件包)以及遗传优化算法,对翼型的气动特性进行优化设计,研究了襟翼不同攻角和摆角对翼型气动性能的影响。基于遗传算法原理建立了优化模型,运用CFD数值模拟方法对流场特性进行分析,以升力系数和升阻比之和为目标函数进行寻优,得到使翼型气动性能最优的参数。结果表明:攻角α=12.183°、襟翼摆动角度为θ=1.100 0°时翼型的气动性能最佳,优化后翼型的升阻比增加了16%,升力系数增加了10.1%,同时也证明多岛遗传算法在翼型气动性能优化中的可行性。  相似文献   

11.
为研究三角襟翼对风力机叶片翼型气动特性的影响,将三角襟翼加至NACA4412翼型尾缘,建立其二维襟翼计算模型,基于CFD数值模拟方法分析不同宽度和长度的三角襟翼在0°~18°攻角范围内的气动特性,得到了各攻角下升阻力系数、升阻比及翼型壁面压强分布曲线。结果表明:增加襟翼长度,使得翼型升阻比减小,失速攻角提前,增加襟翼宽度,使得翼型升阻比增大,失速攻角延后,因此适当减小三角襟翼的长度和增加其宽度有助于提高翼型的气动特性,将翼型尾缘5%部分作为空间生成襟翼,与传统襟翼相比,节省了制造材料和空间。  相似文献   

12.
翼缝是翼型主体与襟翼之间的缝隙,对翼型气动性能与流场结构有很大影响。以两段式NACA0018翼型为基础翼型,对传统弯曲翼缝进行改进设计与数值模拟,以期增大失速攻角及改善在大攻角下的气动性能。结果表明:在小攻角下,导叶翼缝襟翼翼型的升力较原始NACA0018翼型小,阻力较大,但在大攻角下,导叶翼缝可减小翼缝中流体的速度损失,为翼型上表面边界层提供更多动能,从而改善流场结构及失速特性,弯曲翼缝可增大1°失速攻角,而导叶翼缝可增大8°,攻角为18°时升力系数较弯曲翼缝提升43%。因此,导叶翼缝可极大地改善翼型在大攻角下的气动性能。  相似文献   

13.
Gurney襟翼对水平轴风力机性能影响的实验研究   总被引:6,自引:1,他引:6  
在小型低速风洞中对装有NACA4424翼型叶片的水平轴风力机及在其尾缘加装Gurney襟翼的风力机进行了一系列性能对比实验。Gurney襟翼的高度分别为2%b和4%b(b为翼型弦长),叶片安装角在6°~14°范围内,实验风速为6~15m/s。实验结果表明,Gurney襟翼对水平轴风力机性能有显著影响,特别是在大安装角(即大攻角和大升力)下;在小安装角(即小攻角和小升力)时,Gurney襟翼使风力机性能降低。同时,装2%b襟翼的风力机性能要高于装4%b襟翼的风力机;在12°安装角时,前者提高风力机功率最少有39%,而后者也可提高风力机功率在34%以上。对于风力机最常用的叶型FFA-W3-211加装2%b的Gurney襟翼后的风洞对比实验同样证明了上述结论。  相似文献   

14.
《动力工程学报》2016,(6):473-479
通过对柔性尾缘襟翼(DTEF)参数化建模,实现了对尾缘襟翼柔性变形与控制.采用数值模拟方法研究DTEF对翼型整体静态与动态气动性能的影响及流动机理.结果表明:DTEF位于不同摆角时,翼型升力系数与阻力系数均有不同程度的明显改变,随着攻角的增大,襟翼改变翼型气动性能的能力降低,对襟翼附近的流动影响亦减弱;DTEF动态运动过程中,翼型升力系数滞后于摆角的变化,DTEF改变升力系数的能力降低,翼型阻力系数超前于摆角的变化,DTEF改变阻力系数的能力增加,此动态效应随摆动周期减小而增强,并在翼型表面压力系数与尾迹涡量上有一定体现.  相似文献   

15.
通过对柔性尾缘襟翼(DTEF)参数化建模,实现对尾缘襟翼柔性变形与控制。数值模拟DTEF对翼型气动特性的静态及动态情况下的影响,并验证非定常来流下尾缘襟翼对翼型载荷的动态控制效果。研究得出以下结论:DTEF位于不同摆角时,翼型升力系数与阻力系数均有不同程度的明显改变,并随翼型所处攻角的不同改变规律略有变化;DTEF的摆动过程中,翼型升力系数滞后于摆角的变化,DTEF改变升力系数的能力降低;翼型阻力系数超前于摆角的变化,DTEF改变阻力系数的能力增加,襟翼摆动的非定常效应随摆动周期减小而增强;采用跟随风速变化的策略控制尾缘襟翼摆动可有效减缓非定常来流下翼型受力波动。  相似文献   

16.
基于Spalart-Allmaras(S-A)湍流模型,针对NACA0012、NACA0015和NACA0018三种厚度对称襟翼翼型在相对翼缝宽度分别为10‰、15‰和20‰下翼型周围流体的流动情况进行数值模拟,对比分析三种对称翼型在攻角(AOA)为-9°~17°下的升、阻力特性曲线以及翼型周围压力云图和流线图,研究厚度影响襟翼翼型空气动力学特性的流体流动机理。结果表明:襟翼翼型的失速攻角随着翼型厚度的增大而增大,翼型厚度的增大可提高翼型周围特别是襟翼周围流体流动稳定性,使得翼型发生流动分离的分离点向尾缘襟翼处移动,减小尾缘分离涡的影响范围和结构复杂度。  相似文献   

17.
为分析齿形襟翼(SGF)尾缘对风力机翼型气动性能及噪声特性的影响,利用SST k-ω湍流模型对装设Gurney襟翼(GF)和SGF的NACA0018翼型进行数值模拟,研究齿高和齿宽对气动性能和静压分布的影响,并采用大涡模拟(LES)对气动性能最优的SGF进行噪声预估和涡结构分析。结果表明:SGF可有效提高翼型升力系数并延迟失速;SGF-0.8-6.7模型可使最大升阻比提高8.61%,失速攻角延迟3°,其在拓宽高升力区间、延迟失速等方面具有最优性能;SGF翼型上下翼面噪声无明显差异,平均声压级随攻角增大而提高;SGF-0.8-6.7模型的尾迹噪声随攻角增大呈现先增后减的变化趋势,随距离增加而降低;翼型辐射噪声呈典型偶极子状,GF噪声小攻角下降低,而大攻角下则增大,SGF在不同攻角下均降噪显著,最大降噪量达10.2 dB;SGF尾涡稳定有序,能耗及损失降低,由此使气动性能和噪声得以明显改善。  相似文献   

18.
以Spalart-Allmaras(S-A)湍流模型为计算模型,对风力机叶片NACA0018翼型在副翼摆角分别为0°、5°、10°和15°下的流体流动情况进行数值模拟,分析不同攻角下带副翼翼型上升阻力性能曲线以及翼型表面压力分布云图和流场流线图,研究不同摆角对带副翼翼型的空气动力学性能的影响。结果表明:相同攻角时,翼型的升力系数随着副翼摆角的增大而减小;副翼摆角的增大可以增大翼型的失速攻角,改善翼型周围流体的流动状况,提高翼型周围特别是副翼周围流体流动稳定性,抑制流动分离涡的形成。  相似文献   

19.
李新凯  戴丽萍  康顺 《太阳能学报》2015,36(10):2435-2441
为了改善风力机专用大厚度翼型的气动性能,采用分离涡模拟(DES)方法对带有涡发生器(VGs)的40%大厚度翼型进行模拟研究,研究结果表明在一定攻角范围内涡发生器可有效推迟流动分离,提高翼型升力,降低阻力,涡发生器使翼型升力系数最大提高48%,阻力系数最多降低42%;采用同样计算方法对翼型吸力面加装涡发生器,压力面加装挡板的相对厚度为60%、80%的大厚度翼型进行模拟,研究结果表明在翼型吸力面涡发生器可推迟流动分离,在压力面挡板可提高压力面压力,涡发生器+挡板使60%大厚度翼型升力系数最多提高487%,阻力系数最多降低53%,80%大厚度翼型升力系数最多提高1100%,阻力系数最多降低38%。  相似文献   

20.
为了提高风力机的发电效率,优化风机叶片的翼型,以NREL研发的S809翼型为优化对象,设计了双层叶片翼型模型,利用Auto CAD软件建立了双层叶片翼型的几何模型。采取计算流体力学方法(CFD方法),对0~25.21°等26个攻角下双层叶片翼型进行气动计算,对其附近流场的流线图、压力分布云图、压力系数分布进行了分析,并与S809基准翼型进行了比较。结果表明:双层叶片翼型使叶片在不增加翼展的情况下增大升力;相比S809基准翼型,双层叶片翼型将失速攻角增加了6°;最大升力系数在S809翼型1.059的基础上增大到了1.363,研究结果为今后双层叶片翼型的研究打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号