首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyunsaturated fatty acids (PUFA) are important ingredients of human diet because of their prominent role in the function of human brain, eye and kidney. α‐Linolenic acid (ALA), a C18, n‐3 PUFA is a precursor of long chain PUFA in humans. Commercial lipases of Candida rugosa, Pseudomonas cepacea, Pseudomonas fluorescens, and Rhizomucor miehei were used for hydrolysis of flax seed oil. Reversed phase high performance liquid chromatography followed by gas chromatography showed that the purified oil contained 12 triacylglycerols (TAGs) with differences in fatty acid compositions. Flax seed oil TAGs contained α‐linolenic acid (50%) as a major fatty acid while palmitic, oleic, linoleic made up rest of the portion. Among the four commercial lipases C. rugosa has preference for ALA, and that ALA was enriched in free fatty acids. C. rugosa lipase mediated hydrolysis of the TAGs resulted in a fatty acid mixture that was enriched in α‐linolenic to about 72% yield that could be further enriched to 80% yield by selective removal of saturated fatty acids by urea complexation. Such purified ALA can be used for preparation of ALA‐enriched glycerides. Practical applications : This methodology allows purifying ALA from fatty acid mixture obtained from flax seed oil by urea complexation.  相似文献   

2.
The changes in fatty acid composition, non‐polar (triglycerols) and polar lipids (phospholipids), total free fatty acids and total cholesterol of Russian sturgeon (Acipenser gueldenstaedtii) were studied during 360 days of storage at ?18°C. It was established that total neutral lipids and phospholipids content decreased and total free fatty acids concentration increased significantly during the frozen storage. Lower non‐polar and polar lipids content and higher free fatty acids concentration of vacuum‐packaged samples in comparison with air‐packaged samples were found. The changes in total cholesterol concentration and phospholipid classes of frozen stored sturgeon were not influenced by the frozen storage period and the type of packaging. It was established that the sturgeon polar lipids consisted mainly of phosphatidylcholine – 54.98 ± 0.85%, phosphatidylethanolamine – 28.42 ± 0.61%, and phosphatidylserine – 8.64 ± 0.45%. The increase of the total free fatty acids concentration was associated with the free n ? 3 PUFA accumulation as a result of hydrolysis of non‐polar and polar lipids. During the frozen storage DHA percentage of non‐polar lipids and phospholipids decreased approximately 3 and 1.75%, respectively. After 360 days of storage at ?18°C the n ? 3/n ? 6 PUFA ratio of total lipids decreased 4.9%.  相似文献   

3.
The lipase/acyltransferase from Candida parapsilosis is an original biocatalyst that preferentially catalyses alcoholysis over hydrolysis in biphasic aqueous/organic media. In this study, the performance of the immobilised biocatalyst in the interesterification in solvent‐free media of fat blends rich in n‐3 polyunsaturated fatty acids (n‐3 PUFA) was investigated. The interesterification activity of this biocatalyst at a water activity (aw) of 0.97 was similar to that of commercial immobilised lipases at aw values lower than 0.5. Thus, the biocatalyst was further used at an aw of 0.97. Response surface modelling of interesterification was carried out as a function of medium formulation, reaction temperature (55–75 °C) and time (30–120 min). Reaction media were blends of palm stearin (PS), palm kernel oil and triacylglycerols (TAG) rich in n‐3 PUFA (“EPAX 4510TG”; EPAX AS, Norway). The best results in terms of decrease in solid fat content were observed for longer reaction time (>80 min), lower temperature (55–65 °C), higher “EPAX 4510TG” content and lower PS concentration. Reactions at higher temperature led to final interesterified fat blends with lower free fatty acid contents. TAG with high equivalent carbon number (ECN) were consumed while acylglycerols of lower ECN were produced.  相似文献   

4.
Structured lipids (SL) were produced using menhaden oil and capric acid or ethyl caprate as the substrate. Enzymatic reaction conditions were optimized using the Taguchi method L9 orthogonal array with three substrate molar ratio levels of capric acid or ethyl caprate to menhaden oil (1:1, 2:1, and 3:1), three enzyme load levels (5, 10, and 15% [w/w]), three temperature levels (40, 50, and 60 °C), and three reaction times (12, 24, 36 hours). Recombinant lipase from Candida antarctica, Lipozyme® 435, and sn‐1,3 specific Rhizomucor miehei lipase, Lipozyme® RM IM (Novozymes North America, Inc., Franklinton, NC, USA), were used as biocatalysts in both acidolysis and interesterification reactions. Total and sn‐2 fatty acid compositions, triacylglycerol (TAG) molecular species, thermal behavior, and oxidative stability were compared. Optimal conditions for all reactions were 3:1 substrate molar ratio, 10% [w/w] enzyme load, 60 °C, and 16 hours reaction time. Reactions with ethyl caprate incorporated significantly more C10:0, at 30.76 ± 1.15 and 28.63 ± 2.37 mol% versus 19.50 ± 1.06 and 9.81 ± 1.51 mol%, respectively, for both Lipozyme® 435 and Lipozyme® RM IM, respectively. Reactions with ethyl caprate as substrate and Lipozyme® 435 as biocatalyst produced more of the desired medium‐long‐medium (MLM)‐type TAGs with polyunsaturated fatty acids (PUFA) at sn‐2 and C10:0 at sn‐1,3 positions.  相似文献   

5.
The operational stability of a commercial immobilized lipase from Thermomyces lanuginosa (“Lipozyme TL IM”) during the interesterification of two fat blends, in solvent‐free media, in a continuous packed‐bed reactor, was investigated. Blend A was a mixture of palm stearin (POS), palm kernel oil (PK) and sunflower oil (55 : 25 : 20, wt‐%) and blend B was formed by POS, PK and a concentrate of triacylglycerols rich in n‐3 polyunsaturated fatty acids (PUFA) (55 : 35 : 10, wt‐%). The bioreactor operated continuously at 70 °C, for 580 h (blend A) and 390 h (blend B), at a residence time of 15 min. Biocatalyst activity was evaluated in terms of the decrease of the solid fat content at 35 °C of the blends, which is a key parameter in margarine manufacture. The inactivation profile of the biocatalyst could be well described by the first‐order deactivation model: Half‐lives of 135 h and 77 h were estimated when fat blends A and B, respectively, were used. Higher levels of PUFA in blend B, which are rather prone to oxidation, may explain the lower lipase stability when this mixture was used. The free fatty acid content of the interesterified blends decreased to about 1% during the first day of operation, remaining constant thereafter.  相似文献   

6.
Transesterification of fat blends rich in n‐3 polyunsaturated fatty acids (n‐3 PUFA), catalysed by a commercial immobilised thermostable lipase from Thermomyces lanuginosa, was carried out batch‐wise. Experiments were performed, following central composite rotatable designs (CCRDs) as a function of reaction time, temperature and media formulation. Mixtures of palm stearin, palm kernel oil and a commercial concentrate of triacylglycerols rich in n‐3 PUFA (“EPAX 2050TG” in CCRD‐1 and “EPAX 4510TG” in CCRD‐2) were used. The time‐course of transesterification was indirectly followed by the solid fat content (SFC) values of the blend at 10 °C, 20 °C, 30 °C and 35 °C. A decrease in all SFC values of the blends at 10 °C, 20 °C, 30 °C and 35°C was observed upon transesterification. The SFC10 °C and SFC20 °C of transesterified blends varied between 18 and 48 and SFC35 °C between 6 and 24. These values fulfil the technological requirements for the production of margarines. Under our conditions, lipid oxidation may be neglected. However, the accumulation up to 8.3% free fatty acids in reaction media is a problem to overcome. The development of response surface models, describing both the final SFC value and the SFC decrease, will allow predicting results for novel proportions of fats and oils and/or a novel combination time‐temperature.  相似文献   

7.
The influence of the distribution of polyunsaturated fatty acids on the glycerol backbone of dietary triacylglycerols on the fatty acid profile of adipose tissue and muscle phospholipids was investigated in growing‐finishing pigs (48) and broiler chicken (84). The animals were fattened on barley/soybean meal diets supplemented with a blend of soybean oil and beef tallow, either in the ratio 3:1 w/w (high‐PUFA) or 1:3 w/w (low‐ PUFA). Part of the high‐ and low‐PUFA blends was chemically interesterified to randomly distribute all fatty acids over the three positions of the glycerol. Thus, two sets of diets of identical overall fatty acid composition, but differing in the distribution of fatty acids in the triacylglycerols, were fed. Growth performance and carcass composition were neither affected by fatty acid composition nor by randomisation of dietary fats in either animal species. Apparent digestibility of energy was slightly lower in pigs fed the low‐PUFA blends. Fatty acid profile of subcutaneous fat of pigs and broilers as well as of internal body fat (lamina subserosa) and muscle phospholipids of pigs varied according to the dietary fatty acid composition but was not affected by randomisation of dietary fats. These findings are explained in terms of the hydrolysis of TAG during transport of lipids from enterocytes to adipose tissue cells and the continuous lipolysis and re‐esterification of fatty acids that take place in adipose tissue cells.  相似文献   

8.
An attempt was made to enrich arachidonic acid (AA) from Mortierella single-cell oil, which had an AA content of 25%. The first step involved the hydrolysis of the oil with Pseudomonas sp. lipase. A mixture of 2.5 g oil, 2.5 g water, and 4000 units (U) Pseudomonas lipase was incubated at 40°C for 40 h with stirring at 500 rpm. The hydrolysis was 90% complete after 40 h, and the resulting free fatty acids (FFA) were extracted with n-hexane (AA content, 25%; recovery of AA, 91%). The second step involved the selective esterification of the fatty acids with lauryl alcohol and Candida rugosa lipase. A mixture of 3.5 g fatty acids/lauryl alcohol (1:1, mol/mol), 1.5 g water, and 1000 U Candida lipase was incubated at 30°C for 16 h with stirring at 500 rpm. Under these conditions, 55% of the fatty acids were esterified, and the AA content in the FFA fraction was raised to 51% with a 92% yield. The long-chain saturated fatty acids in the FFA fraction were eliminated as urea adducts. This procedure raised the AA content to 63%. To further elevate the AA content, the fatty acids were esterified again in the same manner with Candida lipase. The repeated esterification raised the AA content to 75% with a recovery of 71% of its initial content.  相似文献   

9.
An attempt was made to enrich arachidonic acid (AA) from Mortierella single-cell oil, which had an AA content of 25%. The first step involved the hydrolysis of the oil with Pseudomonas sp. lipase. A mixture of 2.5 g oil, 2.5 g water, and 4000 units (U) Pseudomonas lipase was incubated at 40°C for 40 h with stirring at 500 rpm. The hydrolysis was 90% complete after 40 h, and the resulting free fatty acids (FFA) were extracted with n-hexane (AA content, 25%; recovery of AA, 91%). The second step involved the selective esterification of the fatty acids with lauryl alcohol and Candida rugosa lipase. A mixture of 3.5 g fatty acids/lauryl alcohol (1:1, mol/mol), 1.5 g water, and 1000 U Candida lipase was incubated at 30°C for 16 h with stirring at 500 rpm. Under these conditions, 55% of the fatty acids were esterified, and the AA content in the FFA fraction was raised to 51% with a 92% yield. The long-chain saturated fatty acids in the FFA fraction were eliminated as urea adducts. This procedure raised the AA content to 63%. To further elevate the AA content, the fatty acids were esterified again in the same manner with Candida lipase. The repeated esterification raised the AA content to 75% with a recovery of 71% of its initial content.  相似文献   

10.
Lipase B (GCB) produced by the fungus Geotrichum candidum CMICC 335426 is known for its high specificity towards cis-Δ9 unsaturated fatty acids. The wild-type lipase (not genetically modified) as well as the lipase obtained by heterologous expression of the corresponding gene in Pichia pastoris (genetically modified) were studied in a process aiming to produce an oil containing very little saturated fatty acids (SAFA). The approach described in this paper is based on the selective hydrolysis of sunflower oil (12% SAFA) using the G. candidum type B (GCB) lipases. Depending on the lipase input, up to 60% w/w degree of hydrolysis was obtained within 6–8 h. Because of the high specificity of the GCB lipases (specificity factor ∼30), the level of unsaturates in the free fatty acid fraction was >99% w/w. In contrast with literature data, no loss of specificity was observed, even at the highest degree of hydrolysis obtained. Though both GCB lipases are stable at 30°C, the rate of hydrolysis decreased considerably during the process. Product inhibition as well as time-dependent deactivation (half-life ≈2 h) were shown to be involved. After separation of the oil phase, the unsaturated free fatty acids were recovered from the mixture by evaporation and reconverted to triglycerides by enzymatic esterification with glycerol. Because the GCB lipases have a very low efficiency for esterification, this reaction was carried out with immobilized Rhizomucor miehei lipase. Under continuous removal of the water generated during the process, >95% triglycerides were obtained in less than 24 h. Standard deodorization resulted in an odorless, colorless, and tasteless oil with less than 1% SAFA.  相似文献   

11.
Free fatty acids from fish oil were prepared by saponification of menhaden oil. The resulting mixture of fatty acids contained ca. 15% eicosapentaenoic acid (EPA) and 10% docosahexaenoic acid (DHA), together with other saturated and monounsaturated fatty acids. Four commercial lipases (PS from Pseudomonas cepacia, G from Penicillium camemberti, L2 from Candida antarctica fraction B, and L9 from Mucor miehei) were tested for their ability to catalyze the esterification of glycerol with a mixture of free fatty acids derived from saponified menhaden oil, to which 20% (w/w) conjugated linoleic acid had been added. The mixtures were incubated at 40°C for 48h. The ultimate extent of the esterification reaction (60%) was similar for three of the four lipases studied. Lipase PS produced triacylglycerols at the fastest rate. Lipase G differed from the other three lipases in terms of effecting a much slower reaction rate. In addition, the rate of incorporation of omega-3 fatty acids when mediated by lipase G was slower than the rates of incorporation of other fatty acids present in the reaction mixture. With respect to fatty acid specificities, lipases PS and L9 showed appreciable discrimination against esterification of EPA and DHA, respectively, while lipase L2 exhibited similar activity for all fatty acids present in the reaction mixture. The positional distribution of the various fatty acids between the sn-1,3 and sn-2 positions on the glycerol backbone was also determined.  相似文献   

12.
Structured lipids (SL), formulated by blends of lard and soybean oil in different ratios, were subjected to continuous enzymatic interesterification catalyzed by an immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM) in a continuous packed bed reactor. The original and interesterified blends were examined for fatty acid and triacylglycerol composition, regiospecific distribution, and solid fat content. Blends of lard and soybean oil in the proportions 80:20 and 70:30 (w/w), respectively, demonstrated a fatty acid composition, and proportions of polyunsaturated/saturated fatty acids (PUFA/SFA) and monounsaturated/polyunsaturated fatty acids (MUFA/PUFA), that are appropriate for the formulation of pediatric products. These same blends were suited for this purpose after interesterification because their sn-2 positions were occupied by saturated fatty acids (52.5 and 45.4%, respectively), while unsaturated fatty acids predominantly occupied sn-1,3 positions, akin to human milk fat. Interesterification caused rearrangement of triacylglycerol species.  相似文献   

13.
BACKGROUND: Enzymatic esterification of phytosterols with fatty acids from butterfat in equimolecular conditions to produce phytosteryl esters was performed in solvent‐free medium. Commercial and immobilized Candida rugosa lipases were used as biocatalysts for the reaction. RESULTS: By this methodology, under simple and mild reaction conditions (without solvents, 50 °C and short reaction times), 94% and 99% (w/w) of phystosteroyl esters were obtained in 48 h and 9 h with the commercial and the immobilized lipase, respectively. The effects of temperature, fatty acid specificity, enzyme amount and residual activity of each lipase were also evaluated. CONCLUSIONS: The phytosteryl esters from butterfat produced in this study are expected to have lower melting point, improved oil and fat solubility and bioavailability compared to that of their corresponding free phytosterols. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
A mixture of beef tallow and rapeseed oil (1:1, wt/wt) was interesterified using sodium methoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM) and Candida antarctica (Novozym 435) as catalysts. Chemical interesterifications were carried out at 60 and 90 °C for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt‐% CH3ONa. Enzymatic interesterifications were carried out at 60 °C for 8 h with Lipozyme IM or at 80 °C for 4 h with Novozym 435. The biocatalyst doses were kept constant (8 wt‐%), but the water content was varied from 2 to 10 wt‐%. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a nontriacylglycerol fraction, which contained free fatty acids, mono‐, and diacylglycerols. It was found that the concentration of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower compared with the nonesterified blends. The sn‐2 and sn‐1,3 distribution of fatty acids in the TAG fractions before and after interesterification were determined. These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn‐2 position remained practically unchanged, compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stabilities, as assessed by Rancimat induction times. Addition of 0.02% BHA and BHT to the interesterified fats improved their stabilities.  相似文献   

15.
PUFA from oil extracted from Nile perch viscera were enriched by selective enzymatic esterification of the free fatty acids (FFA) or by hydrolysis of ethyl esters of the fatty acids from the oil (FA‐EE). Quantitative analysis was performed using RP‐HPLC coupled to an evaporative light scattering detector (RP‐HPLC‐ELSD). The lipase from Thermomyces lanuginosus discriminated against docosahexaenoic acid (DHA) most, resulting in the highest DHA/DHA‐EE enrichment while lipase from Pseudomonas cepacia discriminated against eicosapentaenoic acid (EPA) most, resulting in the highest EPA/EPA‐EE enrichment. The lipases discriminated between DHA and EPA with a higher selectivity when present as ethyl esters (EE) than when in FFA form. Thus when DHA/EPA were enriched to the same level during esterification and hydrolysis reactions, the DHA‐EE/EPA‐EE recoveries were higher than those of DHA/EPA‐FFA. In reactions catalysed by lipase from T. lanuginosus, at 26 mol% DHA/DHA‐EE, DHA recovery was 76% while that of DHA‐EE was 84%. In reactions catalysed by lipase from P. cepacia, at 11 mol% EPA/EPA‐EE, EPA recovery was 79% while that of EPA‐EE was 92%. Both esterification of FFA and hydrolysis of FA‐EE were more effective for enriching PUFA compared to hydrolysis of the natural oil and are thus attractive process alternatives for the production of products highly enriched in DHA and/or EPA. When there is only one fatty acid residue in each substrate molecule, the full fatty acid selectivity of the lipase can be expressed, which is not the case with triglycerides as substrates.  相似文献   

16.
Commercial immobilized lipases were used for the synthesis of 2‐monoglycerides (2‐MG) by alcoholysis of palm and tuna oils with ethanol in organic solvents. Several parameters were studied, i.e., the type of immobilized lipases, water activity, type of solvents and temperatures. The optimum conditions for alcoholysis of tuna oil were at a water activity of 0.43 and a temperature of 60 °C in methyl‐tert‐butyl ether for ~12 h. Although immobilized lipase preparations from Pseudomonas sp. and Candida antarctica fraction B are not 1, 3‐regiospecific enzymes, they were considered to be more suitable for the production of 2‐MG by the alcoholysis of tuna oil than the 1, 3‐regiospecific lipases (Lipozyme RM IM from Rhizomucor miehei and lipase D from Rhizopus delemar). With Pseudomonas sp. lipase a yield of up to 81% 2‐MG containing 80% PUFA (poly‐unsaturated fatty acids) from tuna oil was achieved. The optimum conditions for alcoholysis of palm oil were similar as these of tuna oil alcoholysis. However, lipase D immobilized on Accurel EP100 was used as catalyst at 40 °C with shorter reaction times (<12 h). This lead to a yield of ~60% 2‐MG containing 55.0‐55.7% oleic acid and 18.7‐21.0% linoleic acid.  相似文献   

17.
The FA composition in the sn-2 position of TAG is routinely determined after porcine pancreatic lipase hydrolysis. However, the content of saturated FA increased when a pancreatic lipase preparation with higher specific activity was used. Lipase from Rhizopus delemar was selected as a potential replacement lipase for the following reasons: (i) The FA specificity is nearly equivalent in hydrolysis activity toward FA such as lauric, myristic, palmitic, palmitoleic, stearic, oleic, linoleic, and α-linolenic acids; and (ii) lipase from R. delemar hydrolyzes fatty acyl residues at the sn-1,3 positions of TAG. Acyl migration products were present at less than 0.8% in lipase hydrolysates containing 6–14% of sn-2 MAG. A reproducibility CV of less than 5% was obtained in a collaborative study in which the compositions of the main FA at the sn-2 position in olive oil were determined using lipase from R. delemar. This article was presented in part at the Biocatalysis Symposium, 94th AOCS Annual Meeting & Expo, Kansas City, Missouri, May 2003.  相似文献   

18.
The lipase‐catalyzed hydrolysis of castor, coriander, and meadowfoam oils was studied in a two‐phase water/oil system. The lipases from Candida rugosa and Pseudomonas cepacia released all fatty acids from the triglycerides randomly, with the exception of castor oil. In the latter case, the P. cepacia lipase discriminated against ricinoleic acid. The lipase from Geotrichum candidum discriminated against unsaturated acids having the double bond located at the Δ‐6 (petroselinic acid in coriander oil) and Δ‐5 (meadowfoam oil) position or with a hydroxy substituent (ricinoleic acid). The expression of the selectivities of the G. candidum lipase was most pronounced in lipase‐catalyzed esterification reactions, which was exploited as part of a two‐step process to prepare highly concentrated fractions of the acids. In the first step the oils were hydrolyzed to their respective free fatty acids, in the second step a selective lipase was used to catalyze esterification of the acids with 1‐butanol. This resulted in an enrichment of the targeted acids to approximately 95—98% in the unesterified acid fractions compared to the 70—90% content in the starting acid fractions.  相似文献   

19.
Structured triacylglycerols with caprylic acid at the sn‐1 and sn‐3 positions of the glycerol backbone and eicosapentaenoic acid (EPA) at the position sn‐2 were synthesised by acidolysis of a commercially available EPA‐rich oil (EPAX4510, Pronova Biocare) and caprylic acid catalysed by the 1,3‐specific immobilised lipase Lipozyme IM. The reaction was carried out in an immobilised lipase packed‐bed reactor by recirculating the reaction mixture through the bed. The exchange equilibrium constants between caprylic acid and the native fatty acids of EPAX4510 were determined. The n‐3 polyunsaturated fatty acids (PUFAs), EPA and docosohexaenoic acid (DHA), were the most easily displaced by the caprylic acid. The exchange equilibrium constants were 3.68 and 3.06 for EPA and DHA, respectively. The influence of the flow rate of the reaction mixture through the packed‐bed and the substrate concentration in the reaction rate were studied. For flow rates between 74 and 196 cm3 h?1 (bed of 6.6 mm internal diameter and 0.46 porosity) and triacylglycerol concentrations between 0.036 and 0.108 M , the data fitted well to an empirical kinetic model which allowed representative values of the apparent kinetic constant to be obtained. Hence, the average reaction rates and kinetic constants of exchange of caprylic acid and native fatty acids of EPAX4510 could be calculated. In the conditions indicated, the parameter (lipase mass × time/triacylglycerol mass, mLt/V[TG]0) constituted the intensive variable of the process for use in predicting the composition of structured triacylglycerols at different reaction times. At equilibrium, the structured triacylglycerol produced had the following composition: caprylic acid 59.5%, EPA 9.6%, DHA 2.2% and oleic acid 11.8%. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Partial hydrolysis of palm olein catalyzed by phospholipase A1 (Lecitase Ultra) in a solvent‐free system was carried out to produce diacylglycerol (DAG)‐enriched palm olein (DEPO). Four reaction parameters, namely, reaction time (2–10 h), water content (20–60 wt‐% of the oil mass), enzyme load (10–50 U/g of the oil mass), and reaction temperature (30–60 °C), were investigated. The optimal conditions for partial hydrolysis of palm olein catalyzed by Lecitase Ultra were obtained by an orthogonal experiment as follows: 45 °C reaction temperature, 44 wt‐% water content, 8 h reaction time, and an enzyme load of 34 U/g. The upper oil layer of the reaction mixture with an acid value of 54.26 ± 0.86 mg KOH/g was first molecularly distilled at 150 °C to yield a DEPO with 35.51 wt‐% of DAG. The DEPO was distilled again at 250 °C to obtain a DAG oil with 74.52 wt‐% of DAG. The composition of the acylglycerols of palm olein and the DEPO were analyzed and identified by high‐performance liquid chromatography (HPLC) and HPLC/electrospray ionization/mass spectrometry. The released fatty acids from the partial hydrolysis of palm olein catalyzed by phospholipase A1 showed a higher saturated fatty acid content than that of the raw material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号