首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrothermal ageing of wood‐flour‐filled PVC produced by dry‐blending in a high‐speed mixer in the presence of a plasticizer and other processing additives was carried out to investigate its thermal behaviour, and the results obtained were compared with those for the unfilled material. The dry‐blended compounds were prepared as films by a calendering process. The accelerated hydrothermal ageing was carried out by immersing the samples in boiling water at 100 °C for 110 h. The thermal behaviour of the reference and the aged samples in water was characterized by differential scanning calorimetry (DSC) and determination of the weight changes. The study has shown that during hydrothermal ageing, the samples from the whole formulations absorbed water, for instance, for 30 wt% filled PVC (F30), 16 wt% of water absorption was obtained, while this was only 2.2 wt% for unfilled PVC (F0). It was also noticed that the formulations filled with wood flour up to 10 wt% exhibited similar water absorption kinetics, i.e. the water was mostly absorbed during the first 50 h and the amount absorbed was less than 5 wt%. On the other hand, the 30 wt% filled samples regularly absorbed water up to almost 16 wt% after 100 h of immersion. The DSC data showed that hydrothermal ageing significantly affected the onset temperature of decomposition (Td) of the unfilled samples by decreasing this temperature from 228 to 215 °C. For the 30 wt% filled samples, only additive migration was observed, while the Td remained almost unchanged. Furthermore, from the DSC data, processability of the 30 wt% filled PVC samples at elevated temperatures, i.e. 180 to 200 °C was shown. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Wood/plastic composites (WPCs) can absorb moisture in a humid environment due to the hydrophilic nature of the wood in the composites, making products susceptible to microbial growth and loss of mechanical properties. Co‐extruding a poly(vinyl chloride) (PVC)‐rich cap layer on a WPC significantly reduces the moisture uptake rate, increases the flexural strength but, most importantly, decreases the flexural modulus compared to uncapped WPCs. A two‐level factorial design was used to develop regression models evaluating the statistical effects of material compositions and a processing condition on the flexural properties of co‐extruded rigid PVC/wood flour composites with the ultimate goal of producing co‐extruded composites with better flexural properties than uncapped WPCs. Material composition variables included wood flour content in the core layer and carbon nanotube (CNT) content in the cap layer of the co‐extruded composites, with the processing temperature profile for the core layer as the only processing condition variable. Fusion tests were carried out to understand the effects of the material compositions and processing condition on the flexural properties. Regression models indicated all main effects and two powerful interaction effects (processing temperature/wood flour content and wood flour content/CNT content interactions) as statistically significant. Factors leading to a fast fusion of the PVC/wood flour composites in the core layer, i.e. low wood flour content and high processing temperature, were effective material composition and processing condition parameters for improving the flexural properties of co‐extruded composites. Reinforcing the cap layer with CNTs also produced a significant improvement in the flexural properties of the co‐extruded composites, insensitive to the core layer composition and the processing temperature condition. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
Relatioships between the density of foamed rigid PVC/wood‐flour composites and the moisture content of the wood flour, the chemical foaming agent (CFA) content, the content of all‐acrylic foam modifier, and the extruder die temperature were determined by using a response surface model based on a four‐factor central composite design. The experimental results indicated that there is no synergistic effect between teh CFA content and the moisture content of the wood flour. Wood flour moisture could be used effectively as foaming agent in the production of rigid PVC/wood‐flour composite foams. Foam density as low as 0.4 g/cm3 was produced without the use of chemical foaming agents. However, successful foaming of rigid PVC/wood‐flour composite with moisture contained in wood flour strongly depends upon the presence of all‐acrylic foam modifier in the formulation and the extrusion die temperature. The lowest densities were achieved when the all‐acrylic foam modifier concentration was between 7 phr and 10 phr and extruder die temperature was as low as 170°C.  相似文献   

4.
Multi‐walled carbon nanotubes (CNT) were compounded with PVC by a melt blending process based on fusion behaviors of PVC. The effects of CNT content on the flexural and tensile properies of the PVC/CNT composites were evaluated in order to optimize the CNT content. The optimized CNT‐reinforced PVC was used as a matrix in the manufacture of wood‐plastic composites. Flexural, electrical, and thermal properties of the PVC/wood‐flour composites were evaluated as a function of matrix type (nonreinforced vs. CNT‐reinforced). The experimental results indicated that rigid PVC/wood‐flour composites with properties similar to those of solid wood can be made by using CNT‐reinforced PVC as a matrix. The CNT‐reinforced PVC did not influence the electrical and thermal conductivity of the PVC/wood‐flour composites. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

5.
The effects of chemical foaming agent (CFA) types (endothermic versus exothermic) and concentrations as well as the influence of all‐acrylic processing aid on the density and cell morphology of extrusion‐foamed neat rigid PVC and rigid PVC/wood‐flour composites were studied. Regardless of the CFA type, the density reduction of foamed rigid PVC/wood‐flour composites was not influenced by the CFA content. The cell size, however, was affected by the CFA type, independent of CFA content. Exothermic foaming agent produced foamed samples with smaller average cell sizes compared to those of endothermic counterparts. The experimental results indicate that the addition of an all‐acrylic processing aid in the formulation of rigid PVC/wood‐flour composite foams provides not only the ability to achieve density comparable to that achieved in the neat rigid PVC foams, but also the potential of producing rigid PVC/wood‐flour composite foams without using any chemical foaming agents.  相似文献   

6.
The processing of two unplasticized compounds of poly(vinyl chloride) (PVC) with and without wood flour (WF) was performed in a Brabender mixing chamber, at various chamber temperatures between 130 and 200°C and at a shear rate of 12.61 s?1. The test was carried out up to the time corresponding to the equilibrium state of the torque, and the variations of torque and real melt temperature as functions of time were analyzed. It was found that the addition of WF led to fusion at lower chamber temperature and that during gelation, stronger self‐heating effects occurred in the WF‐filled PVC compound. Various characteristics of the real temperature gelation curves of PVC with and without the WF filler were observed and are discussed. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
A new method is presented for the development of natural fiber composites of high‐performance thermoplastic polymers considering poly(phenylene ether) (PPE) and wood flour as an example system. The large gap between the high processing temperature of PPE, typically between 280 and 320°C, and the low decomposition temperature of wood flour, about 200°C, was reduced by using a reactive solvent, a low molecular weight epoxy. The epoxy formed miscible blends with PPE, which offered much lower viscosity compared to PPE and processing temperatures well below the decomposition temperature of wood flour. In addition, the epoxy component accumulated around the polar wood flour particles upon polymerization during the fabrication step. The composite materials consisted of a thermoplastic continuous phase and two dispersed phases, one of polymerized epoxy and the other of wood flour particles coated with polymerized epoxy. These composites offered a significant reduction in density and better mechanical and physical properties when compared to commercially available grades of engineering polymer blends filled with short glass fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2159–2167, 2002  相似文献   

8.
In this study, conifer wood flour was evaluated as a filler to NBR or NBR/PVC compounds studying it influence on their cure characteristics and mechanical properties. It was shown that the filling by wood flour offers a possibility to obtain high modulus high elastic or less elastic or rigid wood like vulcanizates by varying of both the filling level and NBR/PVC mass ratio.It was established that in contrary to the mineral fillers usually causing significant delay of the vulcanization process, the wood flour shows a tendency to reduce the optimum cure time, τ90. Modulus M100 and Shore hardness of the wood flour‐filled vulcanizates of NBR or NBR/PVC compounds in which NBR is predominant, increase in a compliance with the increase of Mmax and DM when the filling level increases. The dependence is other when NBR and PVC are in equal amounts or PVC predominates. As a most probable explanation of the effect of the wood flour on the cure characteristics is accepted, the influence of the wood flour polar groups as well as of the presenting as wood flour humidity water molecules, the specific mechanical properties of the wood flour‐filled NBR or NBR/PVC compounds could be connected (to some extend) with a specific interface interaction between the wood flour particles and the polymer matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2734–2739, 2003  相似文献   

9.
This article aimed to investigate the mechanical, morphological and thermal properties of PVC/LDPE blend with and without the addition of compatibilizers. The effects of LDPE content, compatibilizer type and rubber‐wood sawdust loading on the properties of the blend were evaluated. The experimental results suggested that as the LDPE content was increased the mechanical properties of PVC‐LDPE blend progressively decreased due to poor interfacial adhesion. The continuity and compatibility between PVC and LDPE phases could be improved through three different types of compatibilizers which included chlorinated polyethylene (CPE) poly(methyl‐methacrylate‐co‐butyl acrylate) (PA20) and poly(ethylene‐co‐methacrylate) (Elvaloy). The PA20 was found to be the most suitable compatibilizer for the blend. A radical transfer reaction was proposed in this work to explain the structure and thermal changes of the PVC in PVC‐LDPE blend. The decomposition temperature of PVC in the blend decreased with the loading of the PA20 and the wood sawdust. As the sawdust content was increased the tensile and flexural moduli increased with considerable decreased in the tensile, flexural and impact strength, a slight improvement being achieved if the PA20 was incorporated in the composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 598–606, 2006  相似文献   

10.
Wood‐plastic composites (WPCs) can absorb moisture in a humid environment owing to the hydrophilic nature of the wood, thereby making the products susceptible to microbial growth and loss of mechanical properties. In this study, rigid poly(vinyl chloride) (PVC)/wood‐flour composites (core layer) were coextruded with either unfilled rigid PVC (cap layer) or rigid PVC filled with a small amount (5–27.5%) of wood flour (composite cap layers) in order to decrease or delay the moisture uptake. The thickness of the cap layer and its composition in terms of wood flour content were the variables examined during coextrusion. Surface color, moisture absorption, and flexural properties of both coextruded and noncoextruded (control) composite samples were characterized. The experimental results indicated that both unfilled PVC and composite cap layers can be encapsulated over rigid PVC/wood‐flour composites in a coextrusion process. The moisture uptake rate was lower when a cap layer was applied in the composites, and the extent of the decrease was a strong function of the amount of wood flour in the cap layer but insensitive to cap layer thickness. Overall, coextruding PVC surface‐rich cap layers on WPCs significantly increased the flexural strength but decreased the flexural modulus as compared with those of control samples. The changes in bending properties were sensitive to both cap layer thickness and wood flour content. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers  相似文献   

11.
By using a factorial design approach, this study examined the effect of the component materials on the viscoelastic properties of PVC/wood‐flour composites. Statistical analysis was performed to determine the effects of wood‐flour content, acrylic modifier content, and plasticizer content on the die swell ratio and viscosity of the composites measured online on a conical twin‐screw extrusion capillary rheometer. The viscoelastic properties of the samples also were measured using dynamic mechanical analyzer (DMA). Wood‐flour content and acrylic modifier content were the two important variables affecting the die swell ratio, whereas the addition of a low level of plasticizer did not affect this ratio. The die swell increased with the increased acrylic modifier content, but it was reduced considerably by adding wood flour into the PVC matrix. The true viscosity of neat PVC and PVC/wood‐flour composites decreased with the plasticizer content, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC, while an opposite trend was observed for the composites, owing to the differing effect of acrylic modifier on the melt elasticity and viscosity of these materials. J. Vinyl Addit. Technol. 10:121–128, 2004. © 2004 Society of Plastics Engineers.  相似文献   

12.
Methyl methacrylate and ethylacrylate (MMA‐co‐EA) and methyl methacrylate and butylacrylate (MMA‐co‐BA) copolymeric processing aids were introduced into poly(vinyl chloride) (PVC)/33.3 wt % wood–sawdust composites containing 0.6 and 2.4 phr of calcium stearate lubricant. The properties of the composites were monitored in terms of processibility, rheology, thermal and structural stability, and mechanical properties. It was found that the mixing torque, wall shear stress, and extrudate swell ratio increased with increasing processing aid content because of increased PVC entanglement. MMA‐co‐BA (PA20) was found to be more effective than MMA‐co‐EA (K120 and K130), this being associated with the flexibility of the processing aids, and the dipole–dipole interactions between sawdust particles and polymeric processing aids. The sharkskin characteristic of the composite extrudate at high extrusion rate was moderated by the presence of processing aids. Adding the acrylic‐based processing aids and lubricant into PVC/sawdust composites improved the thermal and structural stability of the composites, which were evidenced by an increase in glass transition and decomposition temperatures and a decrease in polyene sequences, respectively. The changes in the mechanical properties of the composites involved a composite homogeneity, which was varied by degree of entanglement and the presence of wood sawdust, and un‐reacted processing aids left in the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 782–790, 2004  相似文献   

13.
抗氧剂在聚氯乙烯加工中的应用   总被引:1,自引:0,他引:1  
重点研究了抗氧剂对高钛白颜料含量和含金属颜料的PVC压延膜制品加工过程的作用机理及效果,指出对于高钛白含量的PVC压延膜制品,使用受阻酚类抗氧剂是有效且可取的;对于含有金属颜料的PVC压延膜制品,加入金属钝化剂和受阻酚类抗氧剂能有效阻止其在加工过程中的热降解及氧化降解。  相似文献   

14.
This article describes the properties of composites using unplasticized PVC matrix and wood flour (obtained by crushing the bark of Eugenia jambolana) as filler. Composites were prepared by mixing PVC with varying amounts of wood flour (ranging from 10–40 phr; having particle sizes of 100–150 μm and <50μm) using two‐roll mill followed by compression molding. The effect of wood flour content and its particle size on the properties, i.e., mechanical, dynamic mechanical, and thermal was evaluated. Tensile strength, impact strength, and % elongation at break decreased with increasing amounts of wood flour. Stiffness of the composites (as determined by storage modulus) increased with increasing amounts of the filler. Modulus increased significantly when wood flour having particle size <50 μm was used. Morphological characterization (SEM) showed a uniform distribution of wood flour in the composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

15.
This study was aimed at examining the effects of wood flour contents, wood species (softwood vs. hardwood), and particle size on the fusion characteristics (fusion time, fusion temperature, fusion torque, and fusion energy) of rigid PVC/wood‐flour composites in a torque rheometer. Neat rigid PVC exhibited one fusion peak, whereas the addition of wood flour into the PVC matrix led to two fusion peaks. Increased wood flour content caused a significant increase in the time, temperature, and energy at which fusion between the primary particles started, thereby leading to increased fusion torque, irrespective of the wood flour species. These results implied that rigid PVC filled with wood flour must be processed at higher temperatures than neat resin. Although fusion characteristics of the composites were influenced by the wood species, a clear trend between softwood and hardwood species could not be established. However, finer particles fused more quickly and needed less energy than coarse ones. J. VINYL ADDIT. TECHNOL., 13:7–13, 2007. © 2007 Society of Plastics Engineers.  相似文献   

16.
Ultraviolet (UV) weathering performance of unpigmented and rutile titanium dioxide pigmented rigid polyvinyl chloride (PVC)/wood‐fiber composites has been studied. The composite samples were manufactured by dry‐blending PVC, wood fibers, and other processing additives in a high‐intensity mixer. The dry‐blended compounds were extruded and compression molded into panel samples. The manufactured samples were artificially weathered using laboratory accelerated UV tests. Composite samples were exposed to 340‐nm fluorescent UV lamps and assessed every 200 h, for a total of 1200 h of accelerated weathering. Each assessment consisted of a visual examination of surface roughness or erosion, a contact angle measurement, a FTIR collection, and a color measurement. The experimental results indicated that wood fibers are effective sensitizers and that their incorporation into a rigid PVC matrix has a deleterious effect on the ability of the matrix to resist degradation caused ultraviolet irradiation. The light stability of these composites could be improved quite efficiently with the addition of rutile titanium dioxide photoactive pigment during formulation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1943–1950, 2001  相似文献   

17.
The plasticizing and thermostabilizing effect of poly(ethylene glycol)–polyhedral oligomeric silsesquioxane (PEG‐POSS) on poly(vinyl chloride) (PVC) is discussed thoroughly in this work. As PEG‐POSS content increases, PVC becomes more flexible and the decomposition temperature of PVC increases slightly. Meanwhile, the temperature of maximum HCl emission is elevated from 265.3 °C in neat PVC to 285.7 °C in PVC nanocomposites, with the peak intensity of HCl emission decreased by 30.8%, and a new lower intensity of HCl emission peak appearing at much higher temperature (around 370 °C), which is in accordance with the maximum degradation temperature of PEG‐POSS. Thereby, a possible dehydrochlorination mechanism is suggested according to the fact that the electron donor effect of ether groups would stabilize the C? Cl bonds by means of more electron cloud stacked in those bonds, which agrees with Fourier transform infrared and X‐ray photoelectron spectroscopy experiments in terms of hydrogen bonds. © 2016 Society of Chemical Industry  相似文献   

18.
Accelerated hydrolytic aging (according to the NFT 5166 method) was performed on samples of poly(vinyl chloride) (PVC) plasticized with dioctylphthalate (DOP) and dinonyladipate (DNA) at different concentration ratios. The aging test consisted of immersing the samples in boiling water at 100°C. The samples were removed from water regularly, that is, every 2 h, for mechanical, thermal, and dielectric characterizations. Thermograms of PVC plasticized with DOP revealed no migration of the plasticizer independent of the concentration used. Moreover, the thermal stability of the samples was not affected by the hydrothermal aging. However, for PVC samples plasticized with DNA, a small amount of the plasticizer migrated from the polymer matrix with a considerable effect on the thermal stability. In fact, the data indicated a decrease in the decomposition temperature from 275 to 225°C, particularly for samples containing 50% (w/w) DNA immersed up to 10 h. The mechanical results showed that for a plasticizer content greater than 30% (w/w), the strain at break obtained for samples plasticized with DNA was lower than that for samples plasticized with DOP because the DNA molecules were more likely to be removed by water on account of their polarity and dimension. Finally, the dielectric measurements showed that the permittivity of all the PVC samples plasticized with DOP and immersed in boiling water was higher than that of the virgin samples. On the contrary, the permittivity of the aged unplasticized PVC was less than that of the nonimmersed samples. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3447–3457, 2003  相似文献   

19.
This study examined the effects of accelerated freeze–thaw actions on the durability of wood fiber‐plastic composites. Rigid PVC formulations filled with various concentrations of wood flour (both pine and maple) were processed in a counterrotating twin‐screw extruder and exposed to cyclic freeze–thaw actions according to ASTM Standard D6662. Freeze–thaw cycling was also modified by omitting portions of the test (either the water or freezing) to verify whether or not moisture was the primary cause for property loss. The durability of exposed samples was assessed in terms of flexural properties, density, and dimensional stability. Scanning electron micrographs of unexposed and freeze–thaw‐exposed samples were taken to qualitatively evaluate the interfacial adhesion between the wood flour and PVC matrix. The experimental results indicated that the density was not affected by freeze–thaw cycling. The dimensional stability was also relatively unaffected, although greater wood flour content exhibited greater dimensional change. The loss in stiffness of the composites was statistically significant after only two freeze–thaw cycles, regardless of both the wood species and content. Conversely, the strength of the composites was not significantly affected by five freeze–thaw cycles at lower wood flour contents (50 and 75 phr). The deleterious effects of the freeze–thaw actions on the strength of the composites became apparent at higher wood flour content (100 phr) after only two freeze–thaw cycles for maple flour and five freeze–thaw cycles for pine flour. The property loss was attributed primarily to the water portion of the cycling, which appears to have led to the decreased interfacial adhesion between the wood flour and the rigid PVC matrix. J. VINYL. ADDIT. TECHNOL. 11:1–8, 2005. © 2005 Society of Plastics Engineers.  相似文献   

20.
In this study, we aimed to physically and chemically modify wood flour (WF)/chitosan (CS) mixtures to reinforce the mechanical‐, thermal‐, and water‐resistance properties of WF/CS/poly(vinyl chloride) (PVC) composites with a three‐step modification process. This was a vacuum‐pressure treatment of sodium montmorillonite, inner intercalation replacement of organically modified montmorillonite, and surface grafting of glycidyl methacrylate (GMA). The untreated and modified mixtures were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy–energy‐dispersive spectroscopy, thermogravimetric analysis, and contact angle measurement. Meanwhile, the mechanical strengths and water absorption of WF/CS/PVC were estimated. The results indicate that the samples had a better performance after they were modified by montmorillonite (MMT) + GMA than when they were modified by only MMT. MMT and GMA showed a very synergistic enhancement to the mechanical‐, thermal‐, and water‐resistance properties of the WF/CS/PVC composites. Specifically, the maximum flexural and tensile strengths were increased by 10.59 and 12.28%, respectively. The maximum water absorption rate was decreased by 61.99%, and the maximum degradation temperature was delayed to the higher value from 314.3 and 374.9°C in the untreated sample to 388.8 and 412.8°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40757.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号