首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrically conducting films containing AgNws, hydrophilic and hydrophobic resins were prepared. FT‐IR reveals that the interface between the AgNws and epoxy could be successfully modified by APTES. XPS shows that the AgNws were attracted by hydrogen bonds of ? NH2 and ? NH? groups after APTES modification. SEM analysis shows that the AgNws were well dispersed in the resin. The AgNws were also blended with hydrophilic and acrylic resins, and the resulting blends were compared with AgNws/epoxy blends. Results show that AgNw/PVA‐resin films possess the lowest surface electrical resistance. The AgNw/PVA‐resin and silane‐modified AgNw/epoxy resin conductive films possess a similar electrical percolation threshold.

  相似文献   


2.
Thermoplastic starch (MaterBi®) based composites containing flax fibers in unidirectional and crossed‐ply arrangements were produced by hot pressing using the film stacking method. The flax content was varied in three steps, viz. 20, 40 and 60 wt.‐%. Static tensile mechanical properties (stiffness and strength) of the composites were determined on dumbbell specimens. During their loading the acoustic emission (AE) was recorded. Burst type AE signal characteristics (amplitude, width) were traced to the failure mechanisms and supported by fractographic inspection. The mechanical response and failure mode of the composites strongly depended on the flax content and the flax fiber lay‐up. It was established that the tensile strength increases until 40 wt.‐% flax fiber content but stays almost constant above this value. In the case of 40 wt.‐% unidirectional fiber reinforcement, the tensile strength of the composite was 3 times greater than that of the pure starch matrix. The flax fiber reinforcement increased the tensile modulus of the pure starch by several orders of amplitude.

SEM picture of the fracture surface of a composite with UD flax reinforcement.  相似文献   


3.
Summary: Uniformly sized polymer particles were prepared by an emulsification and polymerization technique utilizing a silica monolithic membrane, namely the “silica monolithic membrane emulsification technique”. In this paper, we utilized silica monolithic membrane as a device for the preparation of uniformly sized polymer particles. A mixture of monomers, diluents and oil‐soluble initiator was emulsified into a continuous medium through the silica monolithic membrane and polymerized. The particles obtained had a higher size uniformity than that of particles prepared by previously reported membrane emulsification techniques, such as the Shirasu Porous Glass (SPG) emulsification technique. Through the silica monolithic membrane emulsification technique, we could prepare particles having availability as a possible packing material for solid‐phase extraction (SPE) and high performance liquid chromatography (HPLC).

SEM photograph of silica particles prepared through capillary plate membrane.  相似文献   


4.
Summary: Novel light‐sensitive hollow capsules were fabricated from the small molecule 3‐sulfopropylacrylate potassium (SPA) and poly(allylamine hydrochloride) (PAH). With UV irradiation, SPA could be photopolymerized in the wall of hollow capsules. After photopolymerization the capsule size and surfaces showed pronounced differences. The capsules became much more rigid as indicated by an increase in the modulus of more than a factor of 5.

CLSM image of SPA/PAH hollow capsule emission at 554 nm, from rhodamine B after photopolymerization.  相似文献   


5.
Summary: It was demonstrated that it is possible to produce prepolymers with a number‐average degree of polymerisation on the order of 5–40 directly in a liquid‐liquid dispersion in less than three hours. It was also shown that prepolymers made via this route and rapidly crystallised by the addition of a dispersant at ambient temperature are more porous than prepolymers made in an industrial liquid melt process.

SEM micrograph of prepolymers pLL‐PTA with \overline {DP} _{\rm n} = 28, dp ∈ 63–125 μm.  相似文献   


6.
New models for the Maddock and spiral shearing sections have been developed, employing three‐dimensional finite element analysis (3D FEA). These models describe the pressure‐throughput and power consumption behavior of the shearing sections for both the extrusion and the injection molding process and have been implemented in the REX 6.0 and PSI 4.0 simulation software. As a consequence it is now possible to describe the process behavior of these shearing sections within just a few seconds with the accuracy of FEA calculations.

Actual Maddock shearing section (left) and actual spiral shearing section (right).  相似文献   


7.
N‐Methylol reagents are conventional crosslinking agents that are still widely used in textile industry to produce crease‐resistant cotton fabrics. In this work serine proteases were used to recover the strength of fabrics, cross‐linked with N‐hydroxymethylacrylamide. Nearly one half of the strength loss of crosslinked cotton fabrics could be restored after protease treatment, while the wrinkle recovery angle (WRA) decreased only slightly. The enzymatic hydrolysis of the amide cross‐links in the durable pressed cellulose was confirmed by FT‐IR analysis and dyeability with an acid dye.

Effect of protease concentration on the tensile strength recovery, WRA and acid dye dyeability at 30 min reaction time.  相似文献   


8.
Poly(methyl‐co‐trifluoropropyl)silsesquioxanes (P(M‐co‐TFP)SSQs) were prepared using methyltrimethoxysilane (MTMS) and trifluoropropyltrimethoxysilane (TFPTMS). The molecular weight, microstructure of the copolymers and properties of their thin films have been changed by adjusting reaction parameters such as the molar ratio of water to silane, the molar ratio of catalyst to silane, reaction time, solvent content, and temperature. The refractive index of the copolymer thin film decreased from 1.404 to ca. 1.348 as curing temperature was increased to 420 °C. The dielectric constant of the film decreased with an increase of the molecular weight of the copolymer, and the lowest dielectric constant obtained was ca. 2.2. Hardness and elastic modulus of the thin films were 0.7 and 5 GPa, respectively. Crack velocity was measured to be 10?11 m/s at the film thickness of around 0.9 μm under aqueous environment.

  相似文献   


9.
A blend of random ethylene‐vinyl acetate copolymer (EVA) and triblock styrene‐butadiene‐styrene copolymer (SBS) was dissolved in a recycled engine oil to obtain ternary thermoreversible gels. As the temperature was increased, first a network associated with EVA disappeared, and a second one associated with SBS dominated, maintaining the elastic response of the system. The principal advantage of these ternary systems is that their mechanical properties and thermal stability are better than that of binary gels. These gels, made from waste, can be used as bitumen modifiers to obtain binders of improved properties and good stability, which are useful for road surfacing.

Temperature sweeps of elastic modulus performed at a frequency of 1 Hz.  相似文献   


10.
The compatibilizing effect of nano sized calcium carbonate filler on immiscible blends of styrene‐co‐acrylonitrile/ethylene propylene diene (SAN/EPDM) was examined. The surface energy of the calcium carbonate was modified by stearic acid. The compatibility of SAN/EPDM blends was studied by following the glass transition temperature Tg by DSC. SEM was used to observe the blend morphology and the X‐ray analyzer was used to detect the calcium from filler in samples. Mechanical properties of the blends were determined, and related to changes of polymer‐filler interactions and morphology. The results suggest that the morphology of the SAN/EPDM blends studied was affected by the reduction of surface energy of the filler.

SEM micrograph of an SAN/EPDM blend with 5% of maximally treated filler.  相似文献   


11.
The rheological behavior, morphologies, and tensile properties of reactively compatibilized PVDF/TPU blends are reported. Using PVDF‐g‐AAc as the compatibilizer, PVDF/TPU 90/10 and 10/90 blends are prepared. The carboxylic acid groups of PVDF‐g‐AAc react with the urethane linkages of TPU during melt blending to generate in situ PVDF‐g‐AAc‐g‐TPU which leads to compatibilization of PVDF/TPU blends. The introduction of PVDF‐g‐AAc into the PVDF/TPU blends causes an increase in viscosity. The rheological behavior of the compatibilized PVDF/TPU 90/10 and 10/90 blends are well described by the generalized Zener model. The addition of the compatibilizer PVDF‐g‐AAc reduces the dispersed‐phase domain size and narrows the size distribution. ?Author: The summary has been shortened to comply with the maximum of 700 characters. Pls check/confirm changes!?

  相似文献   


12.
This article reports on mechanical properties of electron beam cured tripropylene glycol diacrylate (TPGDA) and propoxylated glycerol triacrylate (GPTA) films. This study has been motivated by the need to have direct access to those properties for analyzing the thermo‐mechanical behavior and electro‐optical properties of polymer dispersed liquid crystal systems in general, and systems made either of TPGDA or GPTA and low molecular weight liquid crystals in particular. Representative examples of these systems are considered in this work. The effects of the degree of crosslinking on the mechanical strength of the polymer network are analyzed by considering different doses of the electron beam irradiation. As the radiation dose increases, the mechanical strength of the film is enhanced. Addition of a small amount of liquid crystals leads to remarkable plasticizing effects.

Young modulus and rubbery state modulus as a function of EB dose for cured TPGDA films. The filled symbols represent the Young modulus and the open symbols represent the rubbery state modulus. Circles are for pure TPGDA and squares are for TPGDA/E7 mixture with 15 wt.‐% E7.  相似文献   


13.
A series of methyl, benzyl, and mixed polybenzimidazolium halides was synthesised and characterised by NMR spectroscopy. Membranes were formed and ion exchanged with hydroxides. These membranes are of interest for use in potentially platinum‐free anionic exchange membrane fuel cells. Crosslinked membranes were obtained by the addition of α,α′‐dibromo‐p‐xylene to the casting solution. The ion conductivity of membranes was determined by impedance spectroscopy. A hydroxide conductivity of 29 mS · cm?1 at 26 °C and 58 mS · cm?1 at 60 °C was obtained. The thermal and hydrolytic stability was investigated and a pathway for hydrolytic degradation proposed. Hydroxide ions react at the 2 position, the intermediate carbinol opens to the amine–amide, and further degrades under chain scission to diamine and carboxylic acid.

  相似文献   


14.
Summary: A new strategy for the synthesis of composite polymers with larger volume fraction of aqueous inclusions less than 1 µm in diameter is presented. A water‐in‐oil miniemulsion of aqueous droplets in a continuous, cross‐linkable monomer phase is prepared. The addition of an organo‐gelator allows the immobilization of the droplets in a solid gel, thus avoiding the usual demixing upon polymerization of the continuous phase. This pregelled system is then converted into a composite polymer by photoinitiated free radical polymerization. Such coatings may be used for an improved climate control of buildings or as a deposit for the controlled release of actives from polar nano‐droplets.

SEM image of a cross‐linked composite polymer showing controlled droplet inclusions with a maximal diameter of 500 nm.  相似文献   


15.
The viscoelasticity of two thermally crosslinked polymer coatings was examined in terms of relaxation of the applied stress after a sudden strain. Two different transient methods were utilized: flat‐ended cylindrical indentation testing of a polymer film on a rigid substrate and tensile testing of a corresponding free‐standing polymer film. The correlation between tensile and indentation tests was studied. The mechanical response of a viscoelastic layer deposited on a rigid substrate was investigated as a function of indentation depth. There was good agreement between the results of the tensile and indentation tests for thick film layers at moderate indentation depths. The findings indicate that the substrate influences the coating performance by reducing the viscous contribution to the stress response and amplifying the magnitude of the equilibrium modulus for large indentation depths. The indentation method utilized here was shown to be a potentially suitable tool for the determination of Poisson's ratio of polymer films.

  相似文献   


16.
TPU was infiltrated into vertically aligned, 3.5 mm‐long MWNT forests to produce continuously reinforced anisotropic nanocomposites, and thermomechanical and electrical testing has revealed multifunctionality which shows promise for numerous applications. A 1000% increase in the storage modulus at 70 °C was observed as compared to the neat TPU, and these continuously aligned composites showed electrical conductivity two orders‐of‐magnitude greater (≈1.5 S · cm?1) than randomly aligned composites prepared using CNTs from these forests. The heightened improvement for the continuously reinforced composite appears to be owed to the extremely high aspect ratio of these CNTs and the interconnected network which remains after infiltration.

  相似文献   


17.
In gas assisted injection moulding the melt front advancement has a considerable effect on the gas penetration. The evaluation of an appropriate melt filling is an important step to avoid instabilities in the process sequence. Taking a sample moulded part a procedure is presented that enables the part designer to evaluate required melt and gas injection points according to the gas injection technique. Using finite element simulations, different calculations for the melt front advancement lead to the correct gate location.

Presentation of different degrees of filling for the optimised article geometry.  相似文献   


18.
The properties of segmented‐copolymer‐based H‐bonding and non‐H‐bonding crystallisable segments and poly(tetramethylene oxide) segments were studied. The crystallisable segments were monodisperse in length and the non‐hydrogen‐bonding segments were made of tetraamidepiperazineterephthalamide (TPTPT). The polymers were characterised by DSC, FT‐IR, SAXS and DMTA. The mechanical properties were studied by tensile, compression set and tensile set measurements. The TPTPT segmented copolymers displayed low glass transition temperatures (Tg, ?70 °C), good low‐temperature properties, moderate moduli (G′ ≈ 10–33 MPa) and high melting temperatures (185–220 °C). However, as compared to H‐bonded segments, both the modulus and the yield stress were relatively low.

  相似文献   


19.
Summary: Poly(butylene succinate‐co‐adipate) (PBSA) and organically modified montmorillonite (OMMT) nanocomposites of three different compositions were prepared by melt‐extrusion in a batch mixer. The structure of the nanocomposites was studied using X‐ray diffraction (XRD) and transmission electron microscopy (TEM) that revealed a coexistence of exfoliated and intercalated silicate layers dispersed in the PBSA matrix, regardless of the silicate loading. The degree of crystallinity of PBSA decreases with the addition of OMMT platelets. Dynamic mechanical analysis revealed remarkable increase in flexural storage modulus when compared with that of neat PBSA. Tensile property measurements exhibit substantial increase in stiffness with simultaneous increase in elongation at break of nanocomposites as compared to that of neat PBSA. The effect of clay loading on the melt‐state linear viscoelastic behavior of mixed intercalated/exfoliated nanocomposites was also investigated.

Elongation at break of compression molded annealed samples of neat PBSA and various PBSACNs.  相似文献   


20.
Conventional dry‐jet wet fiber spinning techniques were used to fabricate continuous PAN/MWNT composite fibers with up to 20 wt.‐% nanotube loading. PAN at the MWNT interface exhibited lower solubility under thermodynamically favorable conditions than in bulk PAN, indicating good interfacial interaction. Due to the PAN/MWNT interaction at the interface, thermal shrinkage decreases with increasing MWNT loading (5 to 20 wt.‐%). For high MWNT loadings, PAN/MWNT composite fiber at 15 wt.‐% MWNT loading showed an axial electrical conductivity of 1.24 S · m?1. For all loadings, PAN/MWNT composite fibers exhibited higher tensile moduli than theoretically predicted by rule‐of‐mixture calculations, suggesting good reinforcement of the PAN by MWNT.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号